doc-next-gen

Mathlib.Analysis.Calculus.FDeriv.Equiv

Module docstring

{"# The derivative of a linear equivalence

For detailed documentation of the FrΓ©chet derivative, see the module docstring of Analysis/Calculus/FDeriv/Basic.lean.

This file contains the usual formulas (and existence assertions) for the derivative of continuous linear equivalences.

We also prove the usual formula for the derivative of the inverse function, assuming it exists. The inverse function theorem is in Mathlib/Analysis/Calculus/InverseFunctionTheorem/FDeriv.lean. ","### Differentiability of linear equivs, and invariance of differentiability ","### Differentiability of linear isometry equivs, and invariance of differentiability "}

ContinuousLinearEquiv.hasStrictFDerivAt theorem
: HasStrictFDerivAt iso (iso : E β†’L[π•œ] F) x
Full source
@[fun_prop]
protected theorem hasStrictFDerivAt : HasStrictFDerivAt iso (iso : E β†’L[π•œ] F) x :=
  iso.toContinuousLinearMap.hasStrictFDerivAt
Strict Differentiability of Continuous Linear Equivalences
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. Then, at any point $x \in E$, the map $\text{iso}$ is strictly differentiable, with its strict FrΓ©chet derivative at $x$ being $\text{iso}$ itself (viewed as a continuous linear map from $E$ to $F$).
ContinuousLinearEquiv.hasFDerivWithinAt theorem
: HasFDerivWithinAt iso (iso : E β†’L[π•œ] F) s x
Full source
@[fun_prop]
protected theorem hasFDerivWithinAt : HasFDerivWithinAt iso (iso : E β†’L[π•œ] F) s x :=
  iso.toContinuousLinearMap.hasFDerivWithinAt
FrΓ©chet derivative of a continuous linear equivalence within a set
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any point $x \in E$ and any set $s \subseteq E$ containing $x$, the map $\text{iso}$ has a FrΓ©chet derivative within $s$ at $x$, and this derivative is equal to $\text{iso}$ itself (viewed as a continuous linear map from $E$ to $F$).
ContinuousLinearEquiv.hasFDerivAt theorem
: HasFDerivAt iso (iso : E β†’L[π•œ] F) x
Full source
@[fun_prop]
protected theorem hasFDerivAt : HasFDerivAt iso (iso : E β†’L[π•œ] F) x :=
  iso.toContinuousLinearMap.hasFDerivAtFilter
FrΓ©chet Derivative of a Continuous Linear Equivalence is Itself
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $x \in E$. For any continuous linear equivalence $\text{iso} : E \simeq_{\mathbb{K}} F$, the FrΓ©chet derivative of $\text{iso}$ at $x$ exists and is equal to $\text{iso}$ itself (viewed as a continuous linear map from $E$ to $F$).
ContinuousLinearEquiv.differentiableAt theorem
: DifferentiableAt π•œ iso x
Full source
@[fun_prop]
protected theorem differentiableAt : DifferentiableAt π•œ iso x :=
  iso.hasFDerivAt.differentiableAt
Differentiability of Continuous Linear Equivalences
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any point $x \in E$, the map $\text{iso}$ is differentiable at $x$.
ContinuousLinearEquiv.differentiableWithinAt theorem
: DifferentiableWithinAt π•œ iso s x
Full source
@[fun_prop]
protected theorem differentiableWithinAt : DifferentiableWithinAt π•œ iso s x :=
  iso.differentiableAt.differentiableWithinAt
Differentiability of Continuous Linear Equivalences within a Set
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any point $x \in E$ and any set $s \subseteq E$, the map $\text{iso}$ is differentiable within $s$ at $x$.
ContinuousLinearEquiv.fderiv theorem
: fderiv π•œ iso x = iso
Full source
protected theorem fderiv : fderiv π•œ iso x = iso :=
  iso.hasFDerivAt.fderiv
FrΓ©chet Derivative of a Continuous Linear Equivalence is Itself
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$ and $F$ be normed spaces over $\mathbb{K}$. For any continuous linear equivalence $\text{iso} : E \simeq F$ and any point $x \in E$, the FrΓ©chet derivative of $\text{iso}$ at $x$ is equal to $\text{iso}$ itself, viewed as a continuous linear map from $E$ to $F$.
ContinuousLinearEquiv.fderivWithin theorem
(hxs : UniqueDiffWithinAt π•œ s x) : fderivWithin π•œ iso s x = iso
Full source
protected theorem fderivWithin (hxs : UniqueDiffWithinAt π•œ s x) : fderivWithin π•œ iso s x = iso :=
  iso.toContinuousLinearMap.fderivWithin hxs
FrΓ©chet Derivative of a Continuous Linear Equivalence within a Set
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$ and $F$ be normed spaces over $\mathbb{K}$. For a continuous linear equivalence $\text{iso} : E \simeq F$ and a point $x$ in $E$, if $x$ is uniquely differentiable within a set $s \subseteq E$, then the FrΓ©chet derivative of $\text{iso}$ within $s$ at $x$ is equal to $\text{iso}$ itself, i.e., $D(\text{iso}|_s)(x) = \text{iso}$.
ContinuousLinearEquiv.differentiable theorem
: Differentiable π•œ iso
Full source
@[fun_prop]
protected theorem differentiable : Differentiable π•œ iso := fun _ => iso.differentiableAt
Differentiability of Continuous Linear Equivalences
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$ and $F$ be normed spaces over $\mathbb{K}$. For any continuous linear equivalence $\text{iso} : E \simeq F$, the map $\text{iso}$ is differentiable everywhere on $E$.
ContinuousLinearEquiv.differentiableOn theorem
: DifferentiableOn π•œ iso s
Full source
@[fun_prop]
protected theorem differentiableOn : DifferentiableOn π•œ iso s :=
  iso.differentiable.differentiableOn
Differentiability of Continuous Linear Equivalences on Subsets
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$ and $F$ be normed spaces over $\mathbb{K}$. For any continuous linear equivalence $\text{iso} : E \simeq F$ and any subset $s \subseteq E$, the map $\text{iso}$ is differentiable on $s$.
ContinuousLinearEquiv.comp_differentiableWithinAt_iff theorem
{f : G β†’ E} {s : Set G} {x : G} : DifferentiableWithinAt π•œ (iso ∘ f) s x ↔ DifferentiableWithinAt π•œ f s x
Full source
theorem comp_differentiableWithinAt_iff {f : G β†’ E} {s : Set G} {x : G} :
    DifferentiableWithinAtDifferentiableWithinAt π•œ (iso ∘ f) s x ↔ DifferentiableWithinAt π•œ f s x := by
  refine
    ⟨fun H => ?_, fun H => iso.differentiable.differentiableAt.comp_differentiableWithinAt x H⟩
  have : DifferentiableWithinAt π•œ (iso.symm ∘ iso ∘ f) s x :=
    iso.symm.differentiable.differentiableAt.comp_differentiableWithinAt x H
  rwa [← Function.comp_assoc iso.symm iso f, iso.symm_comp_self] at this
Differentiability of Composition with Continuous Linear Equivalence iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a continuous linear equivalence $\text{iso} \colon E \simeq F$, a function $f \colon G \to E$, a subset $s \subseteq G$, and a point $x \in G$, the composition $\text{iso} \circ f$ is differentiable within $s$ at $x$ if and only if $f$ is differentiable within $s$ at $x$.
ContinuousLinearEquiv.comp_differentiableAt_iff theorem
{f : G β†’ E} {x : G} : DifferentiableAt π•œ (iso ∘ f) x ↔ DifferentiableAt π•œ f x
Full source
theorem comp_differentiableAt_iff {f : G β†’ E} {x : G} :
    DifferentiableAtDifferentiableAt π•œ (iso ∘ f) x ↔ DifferentiableAt π•œ f x := by
  rw [← differentiableWithinAt_univ, ← differentiableWithinAt_univ,
    iso.comp_differentiableWithinAt_iff]
Differentiability of Composition with Continuous Linear Equivalence at a Point iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a continuous linear equivalence $\text{iso} \colon E \simeq F$, a function $f \colon G \to E$, and a point $x \in G$, the composition $\text{iso} \circ f$ is differentiable at $x$ if and only if $f$ is differentiable at $x$.
ContinuousLinearEquiv.comp_differentiableOn_iff theorem
{f : G β†’ E} {s : Set G} : DifferentiableOn π•œ (iso ∘ f) s ↔ DifferentiableOn π•œ f s
Full source
theorem comp_differentiableOn_iff {f : G β†’ E} {s : Set G} :
    DifferentiableOnDifferentiableOn π•œ (iso ∘ f) s ↔ DifferentiableOn π•œ f s := by
  rw [DifferentiableOn, DifferentiableOn]
  simp only [iso.comp_differentiableWithinAt_iff]
Differentiability of Composition with Continuous Linear Equivalence on a Subset iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a continuous linear equivalence $\text{iso} \colon E \simeq F$ and a function $f \colon G \to E$, the composition $\text{iso} \circ f$ is differentiable on a subset $s \subseteq G$ if and only if $f$ is differentiable on $s$.
ContinuousLinearEquiv.comp_differentiable_iff theorem
{f : G β†’ E} : Differentiable π•œ (iso ∘ f) ↔ Differentiable π•œ f
Full source
theorem comp_differentiable_iff {f : G β†’ E} : DifferentiableDifferentiable π•œ (iso ∘ f) ↔ Differentiable π•œ f := by
  rw [← differentiableOn_univ, ← differentiableOn_univ]
  exact iso.comp_differentiableOn_iff
Differentiability of Composition with Continuous Linear Equivalence iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a continuous linear equivalence $\text{iso} \colon E \simeq F$ and a function $f \colon G \to E$, the composition $\text{iso} \circ f$ is differentiable on $G$ if and only if $f$ is differentiable on $G$.
ContinuousLinearEquiv.comp_hasFDerivWithinAt_iff theorem
{f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] E} : HasFDerivWithinAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') s x ↔ HasFDerivWithinAt f f' s x
Full source
theorem comp_hasFDerivWithinAt_iff {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] E} :
    HasFDerivWithinAtHasFDerivWithinAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') s x ↔ HasFDerivWithinAt f f' s x := by
  refine ⟨fun H => ?_, fun H => iso.hasFDerivAt.comp_hasFDerivWithinAt x H⟩
  have A : f = iso.symm ∘ iso ∘ f := by
    rw [← Function.comp_assoc, iso.symm_comp_self]
    rfl
  have B : f' = (iso.symm : F β†’L[π•œ] E).comp ((iso : E β†’L[π•œ] F).comp f') := by
    rw [← ContinuousLinearMap.comp_assoc, iso.coe_symm_comp_coe, ContinuousLinearMap.id_comp]
  rw [A, B]
  exact iso.symm.hasFDerivAt.comp_hasFDerivWithinAt x H
FrΓ©chet Differentiability of Composition with Continuous Linear Equivalence within a Subset
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a subset $s \subseteq G$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} E$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $\text{iso} \circ f'$ if and only if $f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $f'$.
ContinuousLinearEquiv.comp_hasStrictFDerivAt_iff theorem
{f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} : HasStrictFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasStrictFDerivAt f f' x
Full source
theorem comp_hasStrictFDerivAt_iff {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
    HasStrictFDerivAtHasStrictFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasStrictFDerivAt f f' x := by
  refine ⟨fun H => ?_, fun H => iso.hasStrictFDerivAt.comp x H⟩
  convert iso.symm.hasStrictFDerivAt.comp x H using 1 <;>
    ext z <;> apply (iso.symm_apply_apply _).symm
Strict Differentiability of Composition with Continuous Linear Equivalence
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} E$, the composition $\text{iso} \circ f$ has a strict FrΓ©chet derivative at $x$ equal to $\text{iso} \circ f'$ if and only if $f$ has a strict FrΓ©chet derivative at $x$ equal to $f'$.
ContinuousLinearEquiv.comp_hasFDerivAt_iff theorem
{f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} : HasFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasFDerivAt f f' x
Full source
theorem comp_hasFDerivAt_iff {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
    HasFDerivAtHasFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasFDerivAt f f' x := by
  simp_rw [← hasFDerivWithinAt_univ, iso.comp_hasFDerivWithinAt_iff]
FrΓ©chet Differentiability of Composition with Continuous Linear Equivalence
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} E$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative at $x$ equal to $\text{iso} \circ f'$ if and only if $f$ has a FrΓ©chet derivative at $x$ equal to $f'$.
ContinuousLinearEquiv.comp_hasFDerivWithinAt_iff' theorem
{f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] F} : HasFDerivWithinAt (iso ∘ f) f' s x ↔ HasFDerivWithinAt f ((iso.symm : F β†’L[π•œ] E).comp f') s x
Full source
theorem comp_hasFDerivWithinAt_iff' {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] F} :
    HasFDerivWithinAtHasFDerivWithinAt (iso ∘ f) f' s x ↔
      HasFDerivWithinAt f ((iso.symm : F β†’L[π•œ] E).comp f') s x := by
  rw [← iso.comp_hasFDerivWithinAt_iff, ← ContinuousLinearMap.comp_assoc, iso.coe_comp_coe_symm,
    ContinuousLinearMap.id_comp]
FrΓ©chet Differentiability of Composition with Continuous Linear Equivalence within a Subset: $(\text{iso} \circ f)' = f' \leftrightarrow f' = \text{iso}^{-1} \circ (\text{iso} \circ f)'$
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a subset $s \subseteq G$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} F$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $f'$ if and only if $f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $\text{iso}^{-1} \circ f'$.
ContinuousLinearEquiv.comp_hasFDerivAt_iff' theorem
{f : G β†’ E} {x : G} {f' : G β†’L[π•œ] F} : HasFDerivAt (iso ∘ f) f' x ↔ HasFDerivAt f ((iso.symm : F β†’L[π•œ] E).comp f') x
Full source
theorem comp_hasFDerivAt_iff' {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] F} :
    HasFDerivAtHasFDerivAt (iso ∘ f) f' x ↔ HasFDerivAt f ((iso.symm : F β†’L[π•œ] E).comp f') x := by
  simp_rw [← hasFDerivWithinAt_univ, iso.comp_hasFDerivWithinAt_iff']
FrΓ©chet Differentiability of Composition with Continuous Linear Equivalence: $(\text{iso} \circ f)' = f' \leftrightarrow f' = \text{iso}^{-1} \circ (\text{iso} \circ f)'$
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} F$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative at $x$ equal to $f'$ if and only if $f$ has a FrΓ©chet derivative at $x$ equal to $\text{iso}^{-1} \circ f'$.
ContinuousLinearEquiv.comp_fderivWithin theorem
{f : G β†’ E} {s : Set G} {x : G} (hxs : UniqueDiffWithinAt π•œ s x) : fderivWithin π•œ (iso ∘ f) s x = (iso : E β†’L[π•œ] F).comp (fderivWithin π•œ f s x)
Full source
theorem comp_fderivWithin {f : G β†’ E} {s : Set G} {x : G} (hxs : UniqueDiffWithinAt π•œ s x) :
    fderivWithin π•œ (iso ∘ f) s x = (iso : E β†’L[π•œ] F).comp (fderivWithin π•œ f s x) := by
  by_cases h : DifferentiableWithinAt π•œ f s x
  Β· rw [fderiv_comp_fderivWithin x iso.differentiableAt h hxs, iso.fderiv]
  Β· have : Β¬DifferentiableWithinAt π•œ (iso ∘ f) s x := mt iso.comp_differentiableWithinAt_iff.1 h
    rw [fderivWithin_zero_of_not_differentiableWithinAt h,
      fderivWithin_zero_of_not_differentiableWithinAt this, ContinuousLinearMap.comp_zero]
Chain Rule for FrΓ©chet Derivative of Composition with Continuous Linear Equivalence
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a continuous linear equivalence $\text{iso} \colon E \simeq F$, a function $f \colon G \to E$, a subset $s \subseteq G$, and a point $x \in G$ where $s$ is uniquely differentiable at $x$, the FrΓ©chet derivative of the composition $\text{iso} \circ f$ within $s$ at $x$ is equal to the composition of $\text{iso}$ with the FrΓ©chet derivative of $f$ within $s$ at $x$, i.e., \[ \text{fderiv}_{\mathbb{K}} (\text{iso} \circ f) s x = \text{iso} \circ (\text{fderiv}_{\mathbb{K}} f s x). \]
ContinuousLinearEquiv.comp_fderiv theorem
{f : G β†’ E} {x : G} : fderiv π•œ (iso ∘ f) x = (iso : E β†’L[π•œ] F).comp (fderiv π•œ f x)
Full source
theorem comp_fderiv {f : G β†’ E} {x : G} :
    fderiv π•œ (iso ∘ f) x = (iso : E β†’L[π•œ] F).comp (fderiv π•œ f x) := by
  rw [← fderivWithin_univ, ← fderivWithin_univ]
  exact iso.comp_fderivWithin uniqueDiffWithinAt_univ
Chain Rule for FrΓ©chet Derivative of Composition with Continuous Linear Equivalence
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a continuous linear equivalence $\text{iso} \colon E \simeq F$ and a function $f \colon G \to E$ that is differentiable at $x \in G$, the FrΓ©chet derivative of the composition $\text{iso} \circ f$ at $x$ is equal to the composition of $\text{iso}$ with the FrΓ©chet derivative of $f$ at $x$, i.e., \[ \text{fderiv}_{\mathbb{K}} (\text{iso} \circ f) x = \text{iso} \circ (\text{fderiv}_{\mathbb{K}} f x). \]
fderivWithin_continuousLinearEquiv_comp theorem
(L : G ≃L[π•œ] G') (f : E β†’ (F β†’L[π•œ] G)) (hs : UniqueDiffWithinAt π•œ s x) : fderivWithin π•œ (fun x ↦ (L : G β†’L[π•œ] G').comp (f x)) s x = (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L)) ∘L (fderivWithin π•œ f s x)
Full source
lemma _root_.fderivWithin_continuousLinearEquiv_comp (L : G ≃L[π•œ] G') (f : E β†’ (F β†’L[π•œ] G))
    (hs : UniqueDiffWithinAt π•œ s x) :
    fderivWithin π•œ (fun x ↦ (L : G β†’L[π•œ] G').comp (f x)) s x =
      (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L)) ∘L (fderivWithin π•œ f s x) := by
  change fderivWithin π•œ (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L) ∘ f) s x = _
  rw [ContinuousLinearEquiv.comp_fderivWithin _ hs]
Chain Rule for FrΓ©chet Derivative of Composition with Continuous Linear Equivalence on a Subset
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$, $F$, $G$, and $G'$ be normed spaces over $\mathbb{K}$. Given a continuous linear equivalence $L \colon G \simeq G'$, a function $f \colon E \to (F \to G)$ (where $F \to G$ denotes continuous linear maps), and a point $x \in E$ where $f$ is differentiable within a set $s \subseteq E$ at $x$, the FrΓ©chet derivative within $s$ of the function $x \mapsto L \circ f(x)$ at $x$ is equal to the composition of the continuous linear equivalence $(F \simeq F) \cong (G \simeq G')$ (induced by $L$) with the FrΓ©chet derivative of $f$ within $s$ at $x$. In symbols: \[ \text{fderiv}_{\mathbb{K}} (x \mapsto L \circ f(x)) s x = ((\text{id}_F \cong L)) \circ \text{fderiv}_{\mathbb{K}} f s x. \]
fderiv_continuousLinearEquiv_comp theorem
(L : G ≃L[π•œ] G') (f : E β†’ (F β†’L[π•œ] G)) (x : E) : fderiv π•œ (fun x ↦ (L : G β†’L[π•œ] G').comp (f x)) x = (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L)) ∘L (fderiv π•œ f x)
Full source
lemma _root_.fderiv_continuousLinearEquiv_comp (L : G ≃L[π•œ] G') (f : E β†’ (F β†’L[π•œ] G)) (x : E) :
    fderiv π•œ (fun x ↦ (L : G β†’L[π•œ] G').comp (f x)) x =
      (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L)) ∘L (fderiv π•œ f x) := by
  change fderiv π•œ (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L) ∘ f) x = _
  rw [ContinuousLinearEquiv.comp_fderiv]
FrΓ©chet Derivative of Composition with Continuous Linear Equivalence
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$, $F$, $G$, and $G'$ be normed spaces over $\mathbb{K}$. Given a continuous linear equivalence $L \colon G \simeq_{\mathbb{K}} G'$ and a function $f \colon E \to (F \to_{\mathbb{K}} G)$ that is differentiable at $x \in E$, the FrΓ©chet derivative of the function $x \mapsto L \circ f(x)$ at $x$ is equal to the composition of the continuous linear equivalence $(F \to_{\mathbb{K}} G) \simeq_{\mathbb{K}} (F \to_{\mathbb{K}} G')$ induced by $L$ with the FrΓ©chet derivative of $f$ at $x$. In mathematical notation: \[ \text{fderiv}_{\mathbb{K}} (x \mapsto L \circ f(x)) \, x = ((\text{id}_{F \to_{\mathbb{K}} G}) \simeq_{\mathbb{K}} L) \circ \text{fderiv}_{\mathbb{K}} f \, x. \]
fderiv_continuousLinearEquiv_comp' theorem
(L : G ≃L[π•œ] G') (f : E β†’ (F β†’L[π•œ] G)) : fderiv π•œ (fun x ↦ (L : G β†’L[π•œ] G').comp (f x)) = fun x ↦ (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L)) ∘L (fderiv π•œ f x)
Full source
lemma _root_.fderiv_continuousLinearEquiv_comp' (L : G ≃L[π•œ] G') (f : E β†’ (F β†’L[π•œ] G)) :
    fderiv π•œ (fun x ↦ (L : G β†’L[π•œ] G').comp (f x)) =
      fun x ↦ (((ContinuousLinearEquiv.refl π•œ F).arrowCongr L)) ∘L (fderiv π•œ f x) := by
  ext x : 1
  exact fderiv_continuousLinearEquiv_comp L f x
FrΓ©chet Derivative of Composition with Continuous Linear Equivalence (Pointwise Form)
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$, $F$, $G$, and $G'$ be normed spaces over $\mathbb{K}$. Given a continuous linear equivalence $L \colon G \simeq_{\mathbb{K}} G'$ and a differentiable function $f \colon E \to (F \to_{\mathbb{K}} G)$, the FrΓ©chet derivative of the function $x \mapsto L \circ f(x)$ is given by \[ \text{fderiv}_{\mathbb{K}} (x \mapsto L \circ f(x)) = \left( (\text{id}_{F \to_{\mathbb{K}} G}) \simeq_{\mathbb{K}} L \right) \circ \text{fderiv}_{\mathbb{K}} f, \] where the right-hand side is evaluated pointwise at each $x \in E$.
ContinuousLinearEquiv.comp_right_differentiableWithinAt_iff theorem
{f : F β†’ G} {s : Set F} {x : E} : DifferentiableWithinAt π•œ (f ∘ iso) (iso ⁻¹' s) x ↔ DifferentiableWithinAt π•œ f s (iso x)
Full source
theorem comp_right_differentiableWithinAt_iff {f : F β†’ G} {s : Set F} {x : E} :
    DifferentiableWithinAtDifferentiableWithinAt π•œ (f ∘ iso) (iso ⁻¹' s) x ↔ DifferentiableWithinAt π•œ f s (iso x) := by
  refine ⟨fun H => ?_, fun H => H.comp x iso.differentiableWithinAt (mapsTo_preimage _ s)⟩
  have : DifferentiableWithinAt π•œ ((f ∘ iso) ∘ iso.symm) s (iso x) := by
    rw [← iso.symm_apply_apply x] at H
    apply H.comp (iso x) iso.symm.differentiableWithinAt
    intro y hy
    simpa only [mem_preimage, apply_symm_apply] using hy
  rwa [Function.comp_assoc, iso.self_comp_symm] at this
Differentiability of Composition with Continuous Linear Equivalence: $f \circ \text{iso}$ Differentiable iff $f$ Differentiable
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : F \to G$ where $G$ is another normed space over $\mathbb{K}$, a point $x \in E$, and a subset $s \subseteq F$, the composition $f \circ \text{iso}$ is differentiable within the preimage $\text{iso}^{-1}(s)$ at $x$ if and only if $f$ is differentiable within $s$ at $\text{iso}(x)$.
ContinuousLinearEquiv.comp_right_differentiableAt_iff theorem
{f : F β†’ G} {x : E} : DifferentiableAt π•œ (f ∘ iso) x ↔ DifferentiableAt π•œ f (iso x)
Full source
theorem comp_right_differentiableAt_iff {f : F β†’ G} {x : E} :
    DifferentiableAtDifferentiableAt π•œ (f ∘ iso) x ↔ DifferentiableAt π•œ f (iso x) := by
  simp only [← differentiableWithinAt_univ, ← iso.comp_right_differentiableWithinAt_iff,
    preimage_univ]
Differentiability of Composition with Continuous Linear Equivalence: $f \circ \text{iso}$ Differentiable iff $f$ Differentiable
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : F \to G$ where $G$ is another normed space over $\mathbb{K}$ and a point $x \in E$, the composition $f \circ \text{iso}$ is differentiable at $x$ if and only if $f$ is differentiable at $\text{iso}(x)$.
ContinuousLinearEquiv.comp_right_differentiableOn_iff theorem
{f : F β†’ G} {s : Set F} : DifferentiableOn π•œ (f ∘ iso) (iso ⁻¹' s) ↔ DifferentiableOn π•œ f s
Full source
theorem comp_right_differentiableOn_iff {f : F β†’ G} {s : Set F} :
    DifferentiableOnDifferentiableOn π•œ (f ∘ iso) (iso ⁻¹' s) ↔ DifferentiableOn π•œ f s := by
  refine ⟨fun H y hy => ?_, fun H y hy => iso.comp_right_differentiableWithinAt_iff.2 (H _ hy)⟩
  rw [← iso.apply_symm_apply y, ← comp_right_differentiableWithinAt_iff]
  apply H
  simpa only [mem_preimage, apply_symm_apply] using hy
Differentiability of Composition with Continuous Linear Equivalence on a Set
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : F \to G$ where $G$ is another normed space over $\mathbb{K}$ and a subset $s \subseteq F$, the composition $f \circ \text{iso}$ is differentiable on the preimage $\text{iso}^{-1}(s)$ if and only if $f$ is differentiable on $s$.
ContinuousLinearEquiv.comp_right_differentiable_iff theorem
{f : F β†’ G} : Differentiable π•œ (f ∘ iso) ↔ Differentiable π•œ f
Full source
theorem comp_right_differentiable_iff {f : F β†’ G} :
    DifferentiableDifferentiable π•œ (f ∘ iso) ↔ Differentiable π•œ f := by
  simp only [← differentiableOn_univ, ← iso.comp_right_differentiableOn_iff, preimage_univ]
Differentiability of Composition with Continuous Linear Equivalence: $f \circ \text{iso}$ Differentiable iff $f$ Differentiable
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For any function $f : F \to G$ where $G$ is another normed space over $\mathbb{K}$, the composition $f \circ \text{iso}$ is differentiable on $E$ if and only if $f$ is differentiable on $F$.
ContinuousLinearEquiv.comp_right_hasFDerivWithinAt_iff theorem
{f : F β†’ G} {s : Set F} {x : E} {f' : F β†’L[π•œ] G} : HasFDerivWithinAt (f ∘ iso) (f'.comp (iso : E β†’L[π•œ] F)) (iso ⁻¹' s) x ↔ HasFDerivWithinAt f f' s (iso x)
Full source
theorem comp_right_hasFDerivWithinAt_iff {f : F β†’ G} {s : Set F} {x : E} {f' : F β†’L[π•œ] G} :
    HasFDerivWithinAtHasFDerivWithinAt (f ∘ iso) (f'.comp (iso : E β†’L[π•œ] F)) (iso ⁻¹' s) x ↔
      HasFDerivWithinAt f f' s (iso x) := by
  refine ⟨fun H => ?_, fun H => H.comp x iso.hasFDerivWithinAt (mapsTo_preimage _ s)⟩
  rw [← iso.symm_apply_apply x] at H
  have A : f = (f ∘ iso) ∘ iso.symm := by
    rw [Function.comp_assoc, iso.self_comp_symm]
    rfl
  have B : f' = (f'.comp (iso : E β†’L[π•œ] F)).comp (iso.symm : F β†’L[π•œ] E) := by
    rw [ContinuousLinearMap.comp_assoc, iso.coe_comp_coe_symm, ContinuousLinearMap.comp_id]
  rw [A, B]
  apply H.comp (iso x) iso.symm.hasFDerivWithinAt
  intro y hy
  simpa only [mem_preimage, apply_symm_apply] using hy
FrΓ©chet Derivative of Composition with Continuous Linear Equivalence within a Set
Informal description
Let $E$, $F$, and $G$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For a function $f : F \to G$, a subset $s \subseteq F$, a point $x \in E$, and a continuous linear map $f' : F \to_{\mathbb{K}} G$, the following are equivalent: 1. The composition $f \circ \text{iso}$ has FrΓ©chet derivative $f' \circ \text{iso}$ within the preimage $\text{iso}^{-1}(s)$ at $x$. 2. The function $f$ has FrΓ©chet derivative $f'$ within $s$ at $\text{iso}(x)$.
ContinuousLinearEquiv.comp_right_hasFDerivAt_iff theorem
{f : F β†’ G} {x : E} {f' : F β†’L[π•œ] G} : HasFDerivAt (f ∘ iso) (f'.comp (iso : E β†’L[π•œ] F)) x ↔ HasFDerivAt f f' (iso x)
Full source
theorem comp_right_hasFDerivAt_iff {f : F β†’ G} {x : E} {f' : F β†’L[π•œ] G} :
    HasFDerivAtHasFDerivAt (f ∘ iso) (f'.comp (iso : E β†’L[π•œ] F)) x ↔ HasFDerivAt f f' (iso x) := by
  simp only [← hasFDerivWithinAt_univ, ← comp_right_hasFDerivWithinAt_iff, preimage_univ]
FrΓ©chet Derivative of Composition with Continuous Linear Equivalence
Informal description
Let $E$, $F$, and $G$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{SL} F$ be a continuous linear equivalence between $E$ and $F$. For a function $f : F \to G$, a point $x \in E$, and a continuous linear map $f' : F \to_{SL} G$, the composition $f \circ \text{iso}$ has FrΓ©chet derivative $f' \circ \text{iso}$ at $x$ if and only if $f$ has FrΓ©chet derivative $f'$ at $\text{iso}(x)$.
ContinuousLinearEquiv.comp_right_hasFDerivWithinAt_iff' theorem
{f : F β†’ G} {s : Set F} {x : E} {f' : E β†’L[π•œ] G} : HasFDerivWithinAt (f ∘ iso) f' (iso ⁻¹' s) x ↔ HasFDerivWithinAt f (f'.comp (iso.symm : F β†’L[π•œ] E)) s (iso x)
Full source
theorem comp_right_hasFDerivWithinAt_iff' {f : F β†’ G} {s : Set F} {x : E} {f' : E β†’L[π•œ] G} :
    HasFDerivWithinAtHasFDerivWithinAt (f ∘ iso) f' (iso ⁻¹' s) x ↔
      HasFDerivWithinAt f (f'.comp (iso.symm : F β†’L[π•œ] E)) s (iso x) := by
  rw [← iso.comp_right_hasFDerivWithinAt_iff, ContinuousLinearMap.comp_assoc,
    iso.coe_symm_comp_coe, ContinuousLinearMap.comp_id]
FrΓ©chet Derivative of Composition with Continuous Linear Equivalence (Variant)
Informal description
Let $E$, $F$, and $G$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For a function $f : F \to G$, a subset $s \subseteq F$, a point $x \in E$, and a continuous linear map $f' : E \to_{\mathbb{K}} G$, the following are equivalent: 1. The composition $f \circ \text{iso}$ has FrΓ©chet derivative $f'$ within the preimage $\text{iso}^{-1}(s)$ at $x$. 2. The function $f$ has FrΓ©chet derivative $f' \circ \text{iso}^{-1}$ within $s$ at $\text{iso}(x)$.
ContinuousLinearEquiv.comp_right_hasFDerivAt_iff' theorem
{f : F β†’ G} {x : E} {f' : E β†’L[π•œ] G} : HasFDerivAt (f ∘ iso) f' x ↔ HasFDerivAt f (f'.comp (iso.symm : F β†’L[π•œ] E)) (iso x)
Full source
theorem comp_right_hasFDerivAt_iff' {f : F β†’ G} {x : E} {f' : E β†’L[π•œ] G} :
    HasFDerivAtHasFDerivAt (f ∘ iso) f' x ↔ HasFDerivAt f (f'.comp (iso.symm : F β†’L[π•œ] E)) (iso x) := by
  simp only [← hasFDerivWithinAt_univ, ← iso.comp_right_hasFDerivWithinAt_iff', preimage_univ]
FrΓ©chet Derivative of Composition with Continuous Linear Equivalence (Pointwise Variant)
Informal description
Let $E$, $F$, and $G$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence. For a function $f : F \to G$, a point $x \in E$, and a continuous linear map $f' : E \to_{\mathbb{K}} G$, the following are equivalent: 1. The composition $f \circ \text{iso}$ has FrΓ©chet derivative $f'$ at $x$. 2. The function $f$ has FrΓ©chet derivative $f' \circ \text{iso}^{-1}$ at $\text{iso}(x)$.
ContinuousLinearEquiv.comp_right_fderivWithin theorem
{f : F β†’ G} {s : Set F} {x : E} (hxs : UniqueDiffWithinAt π•œ (iso ⁻¹' s) x) : fderivWithin π•œ (f ∘ iso) (iso ⁻¹' s) x = (fderivWithin π•œ f s (iso x)).comp (iso : E β†’L[π•œ] F)
Full source
theorem comp_right_fderivWithin {f : F β†’ G} {s : Set F} {x : E}
    (hxs : UniqueDiffWithinAt π•œ (iso ⁻¹' s) x) :
    fderivWithin π•œ (f ∘ iso) (iso ⁻¹' s) x =
      (fderivWithin π•œ f s (iso x)).comp (iso : E β†’L[π•œ] F) := by
  by_cases h : DifferentiableWithinAt π•œ f s (iso x)
  Β· exact (iso.comp_right_hasFDerivWithinAt_iff.2 h.hasFDerivWithinAt).fderivWithin hxs
  Β· have : Β¬DifferentiableWithinAt π•œ (f ∘ iso) (iso ⁻¹' s) x := by
      intro h'
      exact h (iso.comp_right_differentiableWithinAt_iff.1 h')
    rw [fderivWithin_zero_of_not_differentiableWithinAt h,
      fderivWithin_zero_of_not_differentiableWithinAt this, ContinuousLinearMap.zero_comp]
Chain Rule for FrΓ©chet Derivative of Composition with Continuous Linear Equivalence within a Set
Informal description
Let $E$, $F$, and $G$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence between $E$ and $F$. For a function $f : F \to G$, a subset $s \subseteq F$, and a point $x \in E$ such that $\text{iso}^{-1}(s)$ is uniquely differentiable at $x$, the FrΓ©chet derivative of the composition $f \circ \text{iso}$ within $\text{iso}^{-1}(s)$ at $x$ is equal to the composition of the FrΓ©chet derivative of $f$ within $s$ at $\text{iso}(x)$ with $\text{iso}$ as a continuous linear map. That is: $$ D(f \circ \text{iso})_{\text{iso}^{-1}(s)}(x) = Df_s(\text{iso}(x)) \circ \text{iso} $$
ContinuousLinearEquiv.comp_right_fderiv theorem
{f : F β†’ G} {x : E} : fderiv π•œ (f ∘ iso) x = (fderiv π•œ f (iso x)).comp (iso : E β†’L[π•œ] F)
Full source
theorem comp_right_fderiv {f : F β†’ G} {x : E} :
    fderiv π•œ (f ∘ iso) x = (fderiv π•œ f (iso x)).comp (iso : E β†’L[π•œ] F) := by
  rw [← fderivWithin_univ, ← fderivWithin_univ, ← iso.comp_right_fderivWithin, preimage_univ]
  exact uniqueDiffWithinAt_univ
Chain Rule for FrΓ©chet Derivative of Composition with Continuous Linear Equivalence
Informal description
Let $E$, $F$, and $G$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a continuous linear equivalence. For any function $f : F \to G$ and any point $x \in E$, the FrΓ©chet derivative of the composition $f \circ \text{iso}$ at $x$ is equal to the composition of the FrΓ©chet derivative of $f$ at $\text{iso}(x)$ with $\text{iso}$ as a continuous linear map. That is: $$ D(f \circ \text{iso})(x) = Df(\text{iso}(x)) \circ \text{iso} $$
LinearIsometryEquiv.hasStrictFDerivAt theorem
: HasStrictFDerivAt iso (iso : E β†’L[π•œ] F) x
Full source
@[fun_prop]
protected theorem hasStrictFDerivAt : HasStrictFDerivAt iso (iso : E β†’L[π•œ] F) x :=
  (iso : E ≃L[π•œ] F).hasStrictFDerivAt
Strict FrΓ©chet Differentiability of Linear Isometric Equivalences
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a linear isometric equivalence between $E$ and $F$. Then, at any point $x \in E$, the map $\text{iso}$ is strictly FrΓ©chet differentiable, with its strict FrΓ©chet derivative at $x$ being $\text{iso}$ itself (viewed as a continuous linear map from $E$ to $F$).
LinearIsometryEquiv.hasFDerivWithinAt theorem
: HasFDerivWithinAt iso (iso : E β†’L[π•œ] F) s x
Full source
@[fun_prop]
protected theorem hasFDerivWithinAt : HasFDerivWithinAt iso (iso : E β†’L[π•œ] F) s x :=
  (iso : E ≃L[π•œ] F).hasFDerivWithinAt
FrΓ©chet Derivative of a Linear Isometric Equivalence Within a Set
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a linear isometric equivalence between $E$ and $F$. For any point $x \in E$ and any set $s \subseteq E$ containing $x$, the map $\text{iso}$ has a FrΓ©chet derivative within $s$ at $x$, and this derivative is equal to $\text{iso}$ itself (viewed as a continuous linear map from $E$ to $F$).
LinearIsometryEquiv.hasFDerivAt theorem
: HasFDerivAt iso (iso : E β†’L[π•œ] F) x
Full source
@[fun_prop]
protected theorem hasFDerivAt : HasFDerivAt iso (iso : E β†’L[π•œ] F) x :=
  (iso : E ≃L[π•œ] F).hasFDerivAt
FrΓ©chet Derivative of a Linear Isometric Equivalence is Itself
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a linear isometric equivalence between $E$ and $F$. Then, at any point $x \in E$, the map $\text{iso}$ is FrΓ©chet differentiable, with its FrΓ©chet derivative at $x$ being $\text{iso}$ itself (viewed as a continuous linear map from $E$ to $F$).
LinearIsometryEquiv.differentiableAt theorem
: DifferentiableAt π•œ iso x
Full source
@[fun_prop]
protected theorem differentiableAt : DifferentiableAt π•œ iso x :=
  iso.hasFDerivAt.differentiableAt
Differentiability of Linear Isometric Equivalences
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a linear isometric equivalence between $E$ and $F$. Then, for any point $x \in E$, the map $\text{iso}$ is differentiable at $x$.
LinearIsometryEquiv.differentiableWithinAt theorem
: DifferentiableWithinAt π•œ iso s x
Full source
@[fun_prop]
protected theorem differentiableWithinAt : DifferentiableWithinAt π•œ iso s x :=
  iso.differentiableAt.differentiableWithinAt
Differentiability of Linear Isometric Equivalence within a Set
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $\text{iso} : E \simeq F$ be a linear isometric equivalence. For any point $x \in E$ and any subset $s \subseteq E$, the map $\text{iso}$ is differentiable within $s$ at $x$.
LinearIsometryEquiv.fderiv theorem
: fderiv π•œ iso x = iso
Full source
protected theorem fderiv : fderiv π•œ iso x = iso :=
  iso.hasFDerivAt.fderiv
FrΓ©chet Derivative of a Linear Isometric Equivalence is Itself
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $\text{iso} : E \simeq F$ be a linear isometric equivalence. For any point $x \in E$, the FrΓ©chet derivative of $\text{iso}$ at $x$ is equal to $\text{iso}$ itself, i.e., $D\text{iso}(x) = \text{iso}$.
LinearIsometryEquiv.fderivWithin theorem
(hxs : UniqueDiffWithinAt π•œ s x) : fderivWithin π•œ iso s x = iso
Full source
protected theorem fderivWithin (hxs : UniqueDiffWithinAt π•œ s x) : fderivWithin π•œ iso s x = iso :=
  (iso : E ≃L[π•œ] F).fderivWithin hxs
FrΓ©chet Derivative of Linear Isometric Equivalence within a Set
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $\text{iso} : E \simeq F$ be a linear isometric equivalence. For a point $x \in E$ and a set $s \subseteq E$, if $x$ is uniquely differentiable within $s$, then the FrΓ©chet derivative of $\text{iso}$ within $s$ at $x$ equals $\text{iso}$ itself, i.e., $D(\text{iso}|_s)(x) = \text{iso}$.
LinearIsometryEquiv.differentiable theorem
: Differentiable π•œ iso
Full source
@[fun_prop]
protected theorem differentiable : Differentiable π•œ iso := fun _ => iso.differentiableAt
Every Linear Isometric Equivalence is Differentiable
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$ and $F$ be normed spaces over $\mathbb{K}$. For any linear isometric equivalence $\text{iso} \colon E \simeq F$, the map $\text{iso}$ is differentiable everywhere on $E$.
LinearIsometryEquiv.differentiableOn theorem
: DifferentiableOn π•œ iso s
Full source
@[fun_prop]
protected theorem differentiableOn : DifferentiableOn π•œ iso s :=
  iso.differentiable.differentiableOn
Differentiability of Linear Isometric Equivalence on a Subset
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, and let $E$ and $F$ be normed spaces over $\mathbb{K}$. For any linear isometric equivalence $\text{iso} \colon E \simeq F$ and any subset $s \subseteq E$, the map $\text{iso}$ is differentiable on $s$.
LinearIsometryEquiv.comp_differentiableWithinAt_iff theorem
{f : G β†’ E} {s : Set G} {x : G} : DifferentiableWithinAt π•œ (iso ∘ f) s x ↔ DifferentiableWithinAt π•œ f s x
Full source
theorem comp_differentiableWithinAt_iff {f : G β†’ E} {s : Set G} {x : G} :
    DifferentiableWithinAtDifferentiableWithinAt π•œ (iso ∘ f) s x ↔ DifferentiableWithinAt π•œ f s x :=
  (iso : E ≃L[π•œ] F).comp_differentiableWithinAt_iff
Differentiability of Composition with Semilinear Isometric Equivalence iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a semilinear isometric equivalence $\text{iso} \colon E \simeq F$, a function $f \colon G \to E$, a subset $s \subseteq G$, and a point $x \in G$, the composition $\text{iso} \circ f$ is differentiable within $s$ at $x$ if and only if $f$ is differentiable within $s$ at $x$.
LinearIsometryEquiv.comp_differentiableAt_iff theorem
{f : G β†’ E} {x : G} : DifferentiableAt π•œ (iso ∘ f) x ↔ DifferentiableAt π•œ f x
Full source
theorem comp_differentiableAt_iff {f : G β†’ E} {x : G} :
    DifferentiableAtDifferentiableAt π•œ (iso ∘ f) x ↔ DifferentiableAt π•œ f x :=
  (iso : E ≃L[π•œ] F).comp_differentiableAt_iff
Differentiability of Composition with Semilinear Isometric Equivalence at a Point iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a semilinear isometric equivalence $\text{iso} \colon E \simeq F$, a function $f \colon G \to E$, and a point $x \in G$, the composition $\text{iso} \circ f$ is differentiable at $x$ if and only if $f$ is differentiable at $x$.
LinearIsometryEquiv.comp_differentiableOn_iff theorem
{f : G β†’ E} {s : Set G} : DifferentiableOn π•œ (iso ∘ f) s ↔ DifferentiableOn π•œ f s
Full source
theorem comp_differentiableOn_iff {f : G β†’ E} {s : Set G} :
    DifferentiableOnDifferentiableOn π•œ (iso ∘ f) s ↔ DifferentiableOn π•œ f s :=
  (iso : E ≃L[π•œ] F).comp_differentiableOn_iff
Differentiability of Composition with Semilinear Isometric Equivalence on a Subset iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a semilinear isometric equivalence $\text{iso} \colon E \simeq F$ and a function $f \colon G \to E$, the composition $\text{iso} \circ f$ is differentiable on a subset $s \subseteq G$ if and only if $f$ is differentiable on $s$.
LinearIsometryEquiv.comp_differentiable_iff theorem
{f : G β†’ E} : Differentiable π•œ (iso ∘ f) ↔ Differentiable π•œ f
Full source
theorem comp_differentiable_iff {f : G β†’ E} : DifferentiableDifferentiable π•œ (iso ∘ f) ↔ Differentiable π•œ f :=
  (iso : E ≃L[π•œ] F).comp_differentiable_iff
Differentiability of Composition with Linear Isometric Equivalence iff Differentiability of Original Function
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a semilinear isometric equivalence $\text{iso} \colon E \simeq F$ and a function $f \colon G \to E$, the composition $\text{iso} \circ f$ is differentiable on $G$ if and only if $f$ is differentiable on $G$.
LinearIsometryEquiv.comp_hasFDerivWithinAt_iff theorem
{f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] E} : HasFDerivWithinAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') s x ↔ HasFDerivWithinAt f f' s x
Full source
theorem comp_hasFDerivWithinAt_iff {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] E} :
    HasFDerivWithinAtHasFDerivWithinAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') s x ↔ HasFDerivWithinAt f f' s x :=
  (iso : E ≃L[π•œ] F).comp_hasFDerivWithinAt_iff
FrΓ©chet Differentiability of Composition with Linear Isometric Equivalence within a Subset
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \simeq_{\mathbb{K}} F$ be a linear isometric equivalence between $E$ and $F$. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a subset $s \subseteq G$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} E$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $\text{iso} \circ f'$ if and only if $f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $f'$.
LinearIsometryEquiv.comp_hasStrictFDerivAt_iff theorem
{f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} : HasStrictFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasStrictFDerivAt f f' x
Full source
theorem comp_hasStrictFDerivAt_iff {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
    HasStrictFDerivAtHasStrictFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasStrictFDerivAt f f' x :=
  (iso : E ≃L[π•œ] F).comp_hasStrictFDerivAt_iff
Strict Differentiability of Composition with Linear Isometric Equivalence
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \to F$ be a linear isometric equivalence. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} E$, the composition $\text{iso} \circ f$ has a strict FrΓ©chet derivative at $x$ equal to $\text{iso} \circ f'$ if and only if $f$ has a strict FrΓ©chet derivative at $x$ equal to $f'$.
LinearIsometryEquiv.comp_hasFDerivAt_iff theorem
{f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} : HasFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasFDerivAt f f' x
Full source
theorem comp_hasFDerivAt_iff {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] E} :
    HasFDerivAtHasFDerivAt (iso ∘ f) ((iso : E β†’L[π•œ] F).comp f') x ↔ HasFDerivAt f f' x :=
  (iso : E ≃L[π•œ] F).comp_hasFDerivAt_iff
FrΓ©chet Differentiability of Composition with Linear Isometric Equivalence
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \to F$ be a linear isometric equivalence. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} E$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative at $x$ equal to $\text{iso} \circ f'$ if and only if $f$ has a FrΓ©chet derivative at $x$ equal to $f'$.
LinearIsometryEquiv.comp_hasFDerivWithinAt_iff' theorem
{f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] F} : HasFDerivWithinAt (iso ∘ f) f' s x ↔ HasFDerivWithinAt f ((iso.symm : F β†’L[π•œ] E).comp f') s x
Full source
theorem comp_hasFDerivWithinAt_iff' {f : G β†’ E} {s : Set G} {x : G} {f' : G β†’L[π•œ] F} :
    HasFDerivWithinAtHasFDerivWithinAt (iso ∘ f) f' s x ↔ HasFDerivWithinAt f ((iso.symm : F β†’L[π•œ] E).comp f') s x :=
  (iso : E ≃L[π•œ] F).comp_hasFDerivWithinAt_iff'
FrΓ©chet Differentiability of Composition with Linear Isometric Equivalence within a Subset: $(\text{iso} \circ f)' = f' \leftrightarrow f' = \text{iso}^{-1} \circ (\text{iso} \circ f)'$
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \to F$ be a linear isometric equivalence. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a subset $s \subseteq G$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} F$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $f'$ if and only if $f$ has a FrΓ©chet derivative within $s$ at $x$ equal to $\text{iso}^{-1} \circ f'$.
LinearIsometryEquiv.comp_hasFDerivAt_iff' theorem
{f : G β†’ E} {x : G} {f' : G β†’L[π•œ] F} : HasFDerivAt (iso ∘ f) f' x ↔ HasFDerivAt f ((iso.symm : F β†’L[π•œ] E).comp f') x
Full source
theorem comp_hasFDerivAt_iff' {f : G β†’ E} {x : G} {f' : G β†’L[π•œ] F} :
    HasFDerivAtHasFDerivAt (iso ∘ f) f' x ↔ HasFDerivAt f ((iso.symm : F β†’L[π•œ] E).comp f') x :=
  (iso : E ≃L[π•œ] F).comp_hasFDerivAt_iff'
FrΓ©chet Differentiability of Composition with Linear Isometric Equivalence: $(\text{iso} \circ f)' = f' \leftrightarrow f' = \text{iso}^{-1} \circ (\text{iso} \circ f)'$
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\text{iso} : E \to F$ be a linear isometric equivalence. For any function $f : G \to E$ defined on a normed space $G$ over $\mathbb{K}$, a point $x \in G$, and a continuous linear map $f' : G \to_{\mathbb{K}} F$, the composition $\text{iso} \circ f$ has a FrΓ©chet derivative at $x$ equal to $f'$ if and only if $f$ has a FrΓ©chet derivative at $x$ equal to $\text{iso}^{-1} \circ f'$.
LinearIsometryEquiv.comp_fderivWithin theorem
{f : G β†’ E} {s : Set G} {x : G} (hxs : UniqueDiffWithinAt π•œ s x) : fderivWithin π•œ (iso ∘ f) s x = (iso : E β†’L[π•œ] F).comp (fderivWithin π•œ f s x)
Full source
theorem comp_fderivWithin {f : G β†’ E} {s : Set G} {x : G} (hxs : UniqueDiffWithinAt π•œ s x) :
    fderivWithin π•œ (iso ∘ f) s x = (iso : E β†’L[π•œ] F).comp (fderivWithin π•œ f s x) :=
  (iso : E ≃L[π•œ] F).comp_fderivWithin hxs
Chain Rule for FrΓ©chet Derivative of Composition with Linear Isometric Equivalence within a Subset
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a linear isometric equivalence $\text{iso} \colon E \to F$, a function $f \colon G \to E$, a subset $s \subseteq G$, and a point $x \in G$ where $s$ is uniquely differentiable at $x$, the FrΓ©chet derivative of the composition $\text{iso} \circ f$ within $s$ at $x$ is equal to the composition of $\text{iso}$ with the FrΓ©chet derivative of $f$ within $s$ at $x$, i.e., \[ \text{fderiv}_{\mathbb{K}} (\text{iso} \circ f) s x = \text{iso} \circ (\text{fderiv}_{\mathbb{K}} f s x). \]
LinearIsometryEquiv.comp_fderiv theorem
{f : G β†’ E} {x : G} : fderiv π•œ (iso ∘ f) x = (iso : E β†’L[π•œ] F).comp (fderiv π•œ f x)
Full source
theorem comp_fderiv {f : G β†’ E} {x : G} :
    fderiv π•œ (iso ∘ f) x = (iso : E β†’L[π•œ] F).comp (fderiv π•œ f x) :=
  (iso : E ≃L[π•œ] F).comp_fderiv
Chain Rule for FrΓ©chet Derivative of Composition with Linear Isometric Equivalence
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a linear isometric equivalence $\text{iso} \colon E \to F$ and a function $f \colon G \to E$ that is differentiable at $x \in G$, the FrΓ©chet derivative of the composition $\text{iso} \circ f$ at $x$ is equal to the composition of $\text{iso}$ with the FrΓ©chet derivative of $f$ at $x$, i.e., \[ \text{fderiv}_{\mathbb{K}} (\text{iso} \circ f) x = \text{iso} \circ (\text{fderiv}_{\mathbb{K}} f x). \]
LinearIsometryEquiv.comp_fderiv' theorem
{f : G β†’ E} : fderiv π•œ (iso ∘ f) = fun x ↦ (iso : E β†’L[π•œ] F).comp (fderiv π•œ f x)
Full source
theorem comp_fderiv' {f : G β†’ E} :
    fderiv π•œ (iso ∘ f) = fun x ↦ (iso : E β†’L[π•œ] F).comp (fderiv π•œ f x) := by
  ext x : 1
  exact LinearIsometryEquiv.comp_fderiv iso
Chain Rule for FrΓ©chet Derivative of Composition with Linear Isometric Equivalence (Pointwise Version)
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $F$ be normed spaces over $\mathbb{K}$, and $G$ be a normed additive commutative group. Given a linear isometric equivalence $\text{iso} \colon E \to F$ and a differentiable function $f \colon G \to E$, the FrΓ©chet derivative of the composition $\text{iso} \circ f$ at any point $x \in G$ is equal to the composition of $\text{iso}$ with the FrΓ©chet derivative of $f$ at $x$, i.e., \[ \text{fderiv}_{\mathbb{K}} (\text{iso} \circ f) = \lambda x, \text{iso} \circ (\text{fderiv}_{\mathbb{K}} f x). \]
HasFDerivWithinAt.of_local_left_inverse theorem
{g : F β†’ E} {f' : E ≃L[π•œ] F} {a : F} {t : Set F} (hg : Tendsto g (𝓝[t] a) (𝓝[s] (g a))) (hf : HasFDerivWithinAt f (f' : E β†’L[π•œ] F) s (g a)) (ha : a ∈ t) (hfg : βˆ€αΆ  y in 𝓝[t] a, f (g y) = y) : HasFDerivWithinAt g (f'.symm : F β†’L[π•œ] E) t a
Full source
/-- If `f (g y) = y` for `y` in a neighborhood of `a` within `t`,
`g` maps a neighborhood of `a` within `t` to a neighborhood of `g a` within `s`,
and `f` has an invertible derivative `f'` at `g a` within `s`,
then `g` has the derivative `f'⁻¹` at `a` within `t`.

This is one of the easy parts of the inverse function theorem: it assumes that we already have an
inverse function. -/
theorem HasFDerivWithinAt.of_local_left_inverse {g : F β†’ E} {f' : E ≃L[π•œ] F} {a : F} {t : Set F}
    (hg : Tendsto g (𝓝[t] a) (𝓝[s] (g a))) (hf : HasFDerivWithinAt f (f' : E β†’L[π•œ] F) s (g a))
    (ha : a ∈ t) (hfg : βˆ€αΆ  y in 𝓝[t] a, f (g y) = y) :
    HasFDerivWithinAt g (f'.symm : F β†’L[π•œ] E) t a := by
  have : (fun x : F => g x - g a - f'.symm (x - a)) =O[𝓝[t] a]
      fun x : F => f' (g x - g a) - (x - a) :=
    ((f'.symm : F β†’L[π•œ] E).isBigO_comp _ _).congr (fun x ↦ by simp) fun _ ↦ rfl
  refine .of_isLittleO <| this.trans_isLittleO ?_
  clear this
  refine ((hf.isLittleO.comp_tendsto hg).symm.congr' (hfg.mono ?_) .rfl).trans_isBigO ?_
  Β· intro p hp
    simp [hp, hfg.self_of_nhdsWithin ha]
  Β· refine ((hf.isBigO_sub_rev f'.antilipschitz).comp_tendsto hg).congr'
      (Eventually.of_forall fun _ => rfl) (hfg.mono ?_)
    rintro p hp
    simp only [(· ∘ ·), hp, hfg.self_of_nhdsWithin ha]
Inverse Function Theorem for Local Left Inverse with FrΓ©chet Derivative
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $s \subseteq E$ and $t \subseteq F$ be subsets. Suppose $g \colon F \to E$ is a function such that: 1. $g$ maps a neighborhood of $a$ within $t$ to a neighborhood of $g(a)$ within $s$, 2. $f \colon E \to F$ has a FrΓ©chet derivative $f' \colon E \simeq_{\text{SL}[\mathbb{K}]} F$ at $g(a)$ within $s$, 3. $a \in t$, 4. $f(g(y)) = y$ for all $y$ in some neighborhood of $a$ within $t$. Then $g$ has the FrΓ©chet derivative $f'^{-1}$ at $a$ within $t$.
HasStrictFDerivAt.of_local_left_inverse theorem
{f : E β†’ F} {f' : E ≃L[π•œ] F} {g : F β†’ E} {a : F} (hg : ContinuousAt g a) (hf : HasStrictFDerivAt f (f' : E β†’L[π•œ] F) (g a)) (hfg : βˆ€αΆ  y in 𝓝 a, f (g y) = y) : HasStrictFDerivAt g (f'.symm : F β†’L[π•œ] E) a
Full source
/-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an
invertible derivative `f'` at `g a` in the strict sense, then `g` has the derivative `f'⁻¹` at `a`
in the strict sense.

This is one of the easy parts of the inverse function theorem: it assumes that we already have an
inverse function. -/
theorem HasStrictFDerivAt.of_local_left_inverse {f : E β†’ F} {f' : E ≃L[π•œ] F} {g : F β†’ E} {a : F}
    (hg : ContinuousAt g a) (hf : HasStrictFDerivAt f (f' : E β†’L[π•œ] F) (g a))
    (hfg : βˆ€αΆ  y in 𝓝 a, f (g y) = y) : HasStrictFDerivAt g (f'.symm : F β†’L[π•œ] E) a := by
  replace hg := hg.prodMap' hg
  replace hfg := hfg.prodMk_nhds hfg
  have :
    (fun p : F Γ— F => g p.1 - g p.2 - f'.symm (p.1 - p.2)) =O[𝓝 (a, a)] fun p : F Γ— F =>
      f' (g p.1 - g p.2) - (p.1 - p.2) := by
    refine ((f'.symm : F β†’L[π•œ] E).isBigO_comp _ _).congr (fun x => ?_) fun _ => rfl
    simp
  refine .of_isLittleO <| this.trans_isLittleO ?_
  clear this
  refine ((hf.isLittleO.comp_tendsto hg).symm.congr'
    (hfg.mono ?_) (Eventually.of_forall fun _ => rfl)).trans_isBigO ?_
  · rintro p ⟨hp1, hp2⟩
    simp [hp1, hp2]
  Β· refine (hf.isBigO_sub_rev.comp_tendsto hg).congr' (Eventually.of_forall fun _ => rfl)
      (hfg.mono ?_)
    rintro p ⟨hp1, hp2⟩
    simp only [(· ∘ ·), hp1, hp2, Prod.map]
Strict Differentiability of Local Inverse via Invertible Derivative
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $f \colon E \to F$ and $g \colon F \to E$ be functions. Suppose that: 1. $g$ is continuous at a point $a \in F$, 2. $f$ has a strict FrΓ©chet derivative at $g(a)$, given by an invertible continuous linear equivalence $f' \colon E \simeq_{\mathbb{K}} F$, 3. There exists a neighborhood of $a$ such that for all $y$ in this neighborhood, $f(g(y)) = y$. Then $g$ has a strict FrΓ©chet derivative at $a$, and it is equal to the inverse of $f'$, i.e., $g'(a) = (f')^{-1} \colon F \to_{\mathbb{K}} E$.
HasFDerivAt.of_local_left_inverse theorem
{f : E β†’ F} {f' : E ≃L[π•œ] F} {g : F β†’ E} {a : F} (hg : ContinuousAt g a) (hf : HasFDerivAt f (f' : E β†’L[π•œ] F) (g a)) (hfg : βˆ€αΆ  y in 𝓝 a, f (g y) = y) : HasFDerivAt g (f'.symm : F β†’L[π•œ] E) a
Full source
/-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an
invertible derivative `f'` at `g a`, then `g` has the derivative `f'⁻¹` at `a`.

This is one of the easy parts of the inverse function theorem: it assumes that we already have
an inverse function. -/
theorem HasFDerivAt.of_local_left_inverse {f : E β†’ F} {f' : E ≃L[π•œ] F} {g : F β†’ E} {a : F}
    (hg : ContinuousAt g a) (hf : HasFDerivAt f (f' : E β†’L[π•œ] F) (g a))
    (hfg : βˆ€αΆ  y in 𝓝 a, f (g y) = y) : HasFDerivAt g (f'.symm : F β†’L[π•œ] E) a := by
  simp only [← hasFDerivWithinAt_univ, ← nhdsWithin_univ] at hf hfg ⊒
  exact hf.of_local_left_inverse (.inf hg (by simp)) (mem_univ _) hfg
FrΓ©chet Derivative of Local Left Inverse via Invertible Derivative
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$. Let $f \colon E \to F$ and $g \colon F \to E$ be functions, and let $a \in F$. Suppose that: 1. $g$ is continuous at $a$, 2. $f$ has a FrΓ©chet derivative at $g(a)$, given by an invertible continuous linear equivalence $f' \colon E \simeq_{\mathbb{K}} F$, 3. There exists a neighborhood of $a$ such that for all $y$ in this neighborhood, $f(g(y)) = y$. Then $g$ has a FrΓ©chet derivative at $a$, and it is equal to the inverse of $f'$, i.e., $g'(a) = (f')^{-1} \colon F \to_{\mathbb{K}} E$.
PartialHomeomorph.hasStrictFDerivAt_symm theorem
(f : PartialHomeomorph E F) {f' : E ≃L[π•œ] F} {a : F} (ha : a ∈ f.target) (htff' : HasStrictFDerivAt f (f' : E β†’L[π•œ] F) (f.symm a)) : HasStrictFDerivAt f.symm (f'.symm : F β†’L[π•œ] E) a
Full source
/-- If `f` is a partial homeomorphism defined on a neighbourhood of `f.symm a`, and `f` has an
invertible derivative `f'` in the sense of strict differentiability at `f.symm a`, then `f.symm` has
the derivative `f'⁻¹` at `a`.

This is one of the easy parts of the inverse function theorem: it assumes that we already have
an inverse function. -/
theorem PartialHomeomorph.hasStrictFDerivAt_symm (f : PartialHomeomorph E F) {f' : E ≃L[π•œ] F}
    {a : F} (ha : a ∈ f.target) (htff' : HasStrictFDerivAt f (f' : E β†’L[π•œ] F) (f.symm a)) :
    HasStrictFDerivAt f.symm (f'.symm : F β†’L[π•œ] E) a :=
  htff'.of_local_left_inverse (f.symm.continuousAt ha) (f.eventually_right_inverse ha)
Strict Differentiability of Inverse Partial Homeomorphism via Invertible Derivative
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $f$ be a partial homeomorphism between $E$ and $F$. Suppose that: 1. $a$ is a point in the target of $f$ (i.e., $a \in f.\text{target}$), 2. $f$ has a strict FrΓ©chet derivative at $f^{-1}(a)$, given by an invertible continuous linear equivalence $f' : E \simeq_{\mathbb{K}} F$. Then the inverse function $f^{-1}$ has a strict FrΓ©chet derivative at $a$, and it is equal to the inverse of $f'$, i.e., $(f^{-1})'(a) = (f')^{-1} : F \to_{\mathbb{K}} E$.
PartialHomeomorph.hasFDerivAt_symm theorem
(f : PartialHomeomorph E F) {f' : E ≃L[π•œ] F} {a : F} (ha : a ∈ f.target) (htff' : HasFDerivAt f (f' : E β†’L[π•œ] F) (f.symm a)) : HasFDerivAt f.symm (f'.symm : F β†’L[π•œ] E) a
Full source
/-- If `f` is a partial homeomorphism defined on a neighbourhood of `f.symm a`, and `f` has an
invertible derivative `f'` at `f.symm a`, then `f.symm` has the derivative `f'⁻¹` at `a`.

This is one of the easy parts of the inverse function theorem: it assumes that we already have
an inverse function. -/
theorem PartialHomeomorph.hasFDerivAt_symm (f : PartialHomeomorph E F) {f' : E ≃L[π•œ] F} {a : F}
    (ha : a ∈ f.target) (htff' : HasFDerivAt f (f' : E β†’L[π•œ] F) (f.symm a)) :
    HasFDerivAt f.symm (f'.symm : F β†’L[π•œ] E) a :=
  htff'.of_local_left_inverse (f.symm.continuousAt ha) (f.eventually_right_inverse ha)
FrΓ©chet derivative of the inverse of a partial homeomorphism via invertible derivative
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $f$ be a partial homeomorphism between $E$ and $F$. Suppose that: 1. $a$ is a point in the target of $f$ (i.e., $a \in f.\text{target}$), 2. $f$ has a FrΓ©chet derivative at $f^{-1}(a)$, given by an invertible continuous linear equivalence $f' : E \simeq_{\mathbb{K}} F$. Then the inverse function $f^{-1}$ has a FrΓ©chet derivative at $a$, and it is equal to the inverse of $f'$, i.e., $(f^{-1})'(a) = (f')^{-1} : F \to_{\mathbb{K}} E$.
HasFDerivWithinAt.eventually_ne theorem
(h : HasFDerivWithinAt f f' s x) (hf' : βˆƒ C, βˆ€ z, β€–zβ€– ≀ C * β€–f' zβ€–) : βˆ€αΆ  z in 𝓝[s \ { x }] x, f z β‰  c
Full source
theorem HasFDerivWithinAt.eventually_ne (h : HasFDerivWithinAt f f' s x)
    (hf' : βˆƒ C, βˆ€ z, β€–zβ€– ≀ C * β€–f' zβ€–) : βˆ€αΆ  z in 𝓝[s \ {x}] x, f z β‰  c := by
  rcases eq_or_ne (f x) c with rfl | hc
  Β· rw [nhdsWithin, diff_eq, ← inf_principal, ← inf_assoc, eventually_inf_principal]
    have A : (fun z => z - x) =O[𝓝[s] x] fun z => f' (z - x) :=
      isBigO_iff.2 <| hf'.imp fun C hC => Eventually.of_forall fun z => hC _
    have : (fun z => f z - f x) ~[𝓝[s] x] fun z => f' (z - x) := h.isLittleO.trans_isBigO A
    simpa [not_imp_not, sub_eq_zero] using (A.trans this.isBigO_symm).eq_zero_imp
  Β· exact (h.continuousWithinAt.eventually_ne hc).filter_mono <| by gcongr; apply diff_subset
Eventual distinctness of function values near a point with FrΓ©chet derivative
Informal description
Let $E$ and $F$ be normed spaces, $f : E \to F$ a function, $s \subseteq E$ a subset, and $x \in E$. If $f$ has a FrΓ©chet derivative $f'$ within $s$ at $x$, and there exists a constant $C > 0$ such that $\|z\| \leq C \|f'(z)\|$ for all $z \in E$, then for all $z$ in a punctured neighborhood of $x$ within $s$, $f(z) \neq c$.
HasFDerivAt.eventually_ne theorem
(h : HasFDerivAt f f' x) (hf' : βˆƒ C, βˆ€ z, β€–zβ€– ≀ C * β€–f' zβ€–) : βˆ€αΆ  z in 𝓝[β‰ ] x, f z β‰  c
Full source
theorem HasFDerivAt.eventually_ne (h : HasFDerivAt f f' x) (hf' : βˆƒ C, βˆ€ z, β€–zβ€– ≀ C * β€–f' zβ€–) :
    βˆ€αΆ  z in 𝓝[β‰ ] x, f z β‰  c := by
  simpa only [compl_eq_univ_diff] using (hasFDerivWithinAt_univ.2 h).eventually_ne hf'
Eventual Distinctness of Function Values Near a Differentiable Point
Informal description
Let $E$ and $F$ be normed spaces, $f : E \to F$ a function, and $x \in E$. If $f$ has a FrΓ©chet derivative $f'$ at $x$, and there exists a constant $C > 0$ such that $\|z\| \leq C \|f'(z)\|$ for all $z \in E$, then for all $z$ in a punctured neighborhood of $x$, $f(z) \neq c$.
has_fderiv_at_filter_real_equiv theorem
{L : Filter E} : Tendsto (fun x' : E => β€–x' - x‖⁻¹ * β€–f x' - f x - f' (x' - x)β€–) L (𝓝 0) ↔ Tendsto (fun x' : E => β€–x' - x‖⁻¹ β€’ (f x' - f x - f' (x' - x))) L (𝓝 0)
Full source
theorem has_fderiv_at_filter_real_equiv {L : Filter E} :
    TendstoTendsto (fun x' : E => β€–x' - x‖⁻¹ * β€–f x' - f x - f' (x' - x)β€–) L (𝓝 0) ↔
      Tendsto (fun x' : E => β€–x' - x‖⁻¹ β€’ (f x' - f x - f' (x' - x))) L (𝓝 0) := by
  symm
  rw [tendsto_iff_norm_sub_tendsto_zero]
  refine tendsto_congr fun x' => ?_
  simp [norm_smul]
Equivalence of FrΓ©chet Derivative Conditions in Normed Spaces
Informal description
Let $E$ be a normed space, $f : E \to F$ a function between normed spaces, $x \in E$, and $f' : E \to F$ a continuous linear map. For any filter $L$ on $E$, the following are equivalent: 1. The limit $\lim_{x' \to_L x} \frac{\|f(x') - f(x) - f'(x' - x)\|}{\|x' - x\|} = 0$; 2. The limit $\lim_{x' \to_L x} \frac{f(x') - f(x) - f'(x' - x)}{\|x' - x\|} = 0$ in the norm topology of $F$.
HasFDerivAt.lim_real theorem
(hf : HasFDerivAt f f' x) (v : E) : Tendsto (fun c : ℝ => c β€’ (f (x + c⁻¹ β€’ v) - f x)) atTop (𝓝 (f' v))
Full source
theorem HasFDerivAt.lim_real (hf : HasFDerivAt f f' x) (v : E) :
    Tendsto (fun c : ℝ => c β€’ (f (x + c⁻¹ β€’ v) - f x)) atTop (𝓝 (f' v)) := by
  apply hf.lim v
  rw [tendsto_atTop_atTop]
  exact fun b => ⟨b, fun a ha => le_trans ha (le_abs_self _)⟩
Limit characterization of FrΓ©chet derivative via directional difference quotients
Informal description
Let $E$ and $F$ be normed spaces over $\mathbb{R}$, $f : E \to F$ a function, and $x \in E$. If $f$ is FrΓ©chet differentiable at $x$ with derivative $f'$, then for any vector $v \in E$, the limit of $c \cdot (f(x + c^{-1}v) - f(x))$ as $c \to +\infty$ exists and equals $f'(v)$.
HasFDerivWithinAt.mapsTo_tangent_cone theorem
{x : E} (h : HasFDerivWithinAt f f' s x) : MapsTo f' (tangentConeAt π•œ s x) (tangentConeAt π•œ (f '' s) (f x))
Full source
/-- The image of a tangent cone under the differential of a map is included in the tangent cone to
the image. -/
theorem HasFDerivWithinAt.mapsTo_tangent_cone {x : E} (h : HasFDerivWithinAt f f' s x) :
    MapsTo f' (tangentConeAt π•œ s x) (tangentConeAt π•œ (f '' s) (f x)) := by
  rintro v ⟨c, d, dtop, clim, cdlim⟩
  refine
    ⟨c, fun n => f (x + d n) - f x, mem_of_superset dtop ?_, clim, h.lim atTop dtop clim cdlim⟩
  simp +contextual [-mem_image, mem_image_of_mem]
Image of Tangent Cone under Derivative is Contained in Tangent Cone of Image
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $f : E \to F$ be a function differentiable within a set $s \subseteq E$ at a point $x \in s$ with derivative $f'$. Then the derivative $f'$ maps the tangent cone of $s$ at $x$ into the tangent cone of the image $f(s)$ at $f(x)$. In other words, if $v$ belongs to the tangent cone of $s$ at $x$, then $f'(v)$ belongs to the tangent cone of $f(s)$ at $f(x)$.
HasFDerivWithinAt.uniqueDiffWithinAt theorem
{x : E} (h : HasFDerivWithinAt f f' s x) (hs : UniqueDiffWithinAt π•œ s x) (h' : DenseRange f') : UniqueDiffWithinAt π•œ (f '' s) (f x)
Full source
/-- If a set has the unique differentiability property at a point x, then the image of this set
under a map with onto derivative has also the unique differentiability property at the image point.
-/
theorem HasFDerivWithinAt.uniqueDiffWithinAt {x : E} (h : HasFDerivWithinAt f f' s x)
    (hs : UniqueDiffWithinAt π•œ s x) (h' : DenseRange f') : UniqueDiffWithinAt π•œ (f '' s) (f x) := by
  refine ⟨h'.dense_of_mapsTo f'.continuous hs.1 ?_, h.continuousWithinAt.mem_closure_image hs.2⟩
  show
    Submodule.span π•œ (tangentConeAt π•œ s x) ≀
      (Submodule.span π•œ (tangentConeAt π•œ (f '' s) (f x))).comap f'
  rw [Submodule.span_le]
  exact h.mapsTo_tangent_cone.mono Subset.rfl Submodule.subset_span
Preservation of Unique Differentiability under Densely Ranged Derivatives
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $f : E \to F$ be a function differentiable within a set $s \subseteq E$ at a point $x \in s$ with derivative $f'$. If $s$ has the unique differentiability property at $x$ and the range of $f'$ is dense in $F$, then the image $f(s)$ has the unique differentiability property at $f(x)$.
UniqueDiffOn.image theorem
{f' : E β†’ E β†’L[π•œ] F} (hs : UniqueDiffOn π•œ s) (hf' : βˆ€ x ∈ s, HasFDerivWithinAt f (f' x) s x) (hd : βˆ€ x ∈ s, DenseRange (f' x)) : UniqueDiffOn π•œ (f '' s)
Full source
theorem UniqueDiffOn.image {f' : E β†’ E β†’L[π•œ] F} (hs : UniqueDiffOn π•œ s)
    (hf' : βˆ€ x ∈ s, HasFDerivWithinAt f (f' x) s x) (hd : βˆ€ x ∈ s, DenseRange (f' x)) :
    UniqueDiffOn π•œ (f '' s) :=
  forall_mem_image.2 fun x hx => (hf' x hx).uniqueDiffWithinAt (hs x hx) (hd x hx)
Preservation of Unique Differentiability under Densely Ranged Derivatives on Images
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $s \subseteq E$ be a set with the unique differentiability property on $\mathbb{K}$. Suppose $f : E \to F$ is a function such that for every $x \in s$, $f$ has a FrΓ©chet derivative $f'(x)$ within $s$ at $x$, and the range of $f'(x)$ is dense in $F$. Then the image $f(s)$ has the unique differentiability property on $\mathbb{K}$.
HasFDerivWithinAt.uniqueDiffWithinAt_of_continuousLinearEquiv theorem
{x : E} (e' : E ≃L[π•œ] F) (h : HasFDerivWithinAt f (e' : E β†’L[π•œ] F) s x) (hs : UniqueDiffWithinAt π•œ s x) : UniqueDiffWithinAt π•œ (f '' s) (f x)
Full source
theorem HasFDerivWithinAt.uniqueDiffWithinAt_of_continuousLinearEquiv {x : E} (e' : E ≃L[π•œ] F)
    (h : HasFDerivWithinAt f (e' : E β†’L[π•œ] F) s x) (hs : UniqueDiffWithinAt π•œ s x) :
    UniqueDiffWithinAt π•œ (f '' s) (f x) :=
  h.uniqueDiffWithinAt hs e'.surjective.denseRange
Preservation of Unique Differentiability under Continuous Linear Equivalence Derivatives
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $f : E \to F$ be a function differentiable within a set $s \subseteq E$ at a point $x \in s$ with derivative given by a continuous linear equivalence $e' : E \simeqL[\mathbb{K}] F$. If $s$ has the unique differentiability property at $x$, then the image $f(s)$ has the unique differentiability property at $f(x)$.
ContinuousLinearEquiv.uniqueDiffOn_image theorem
(e : E ≃L[π•œ] F) (h : UniqueDiffOn π•œ s) : UniqueDiffOn π•œ (e '' s)
Full source
theorem ContinuousLinearEquiv.uniqueDiffOn_image (e : E ≃L[π•œ] F) (h : UniqueDiffOn π•œ s) :
    UniqueDiffOn π•œ (e '' s) :=
  h.image (fun _ _ => e.hasFDerivWithinAt) fun _ _ => e.surjective.denseRange
Preservation of Unique Differentiability under Continuous Linear Equivalence Images
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $e : E \simeqL[\mathbb{K}] F$ be a continuous linear equivalence. If a set $s \subseteq E$ has the unique differentiability property on $\mathbb{K}$, then the image $e(s) \subseteq F$ also has the unique differentiability property on $\mathbb{K}$.
ContinuousLinearEquiv.uniqueDiffOn_image_iff theorem
(e : E ≃L[π•œ] F) : UniqueDiffOn π•œ (e '' s) ↔ UniqueDiffOn π•œ s
Full source
@[simp]
theorem ContinuousLinearEquiv.uniqueDiffOn_image_iff (e : E ≃L[π•œ] F) :
    UniqueDiffOnUniqueDiffOn π•œ (e '' s) ↔ UniqueDiffOn π•œ s :=
  ⟨fun h => e.symm_image_image s β–Έ e.symm.uniqueDiffOn_image h, e.uniqueDiffOn_image⟩
Unique Differentiability of Set Image under Continuous Linear Equivalence
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $e : E \simeqL[\mathbb{K}] F$ be a continuous linear equivalence. A subset $s \subseteq E$ has the unique differentiability property on $\mathbb{K}$ if and only if its image $e(s) \subseteq F$ has the unique differentiability property on $\mathbb{K}$.
ContinuousLinearEquiv.uniqueDiffOn_preimage_iff theorem
(e : F ≃L[π•œ] E) : UniqueDiffOn π•œ (e ⁻¹' s) ↔ UniqueDiffOn π•œ s
Full source
@[simp]
theorem ContinuousLinearEquiv.uniqueDiffOn_preimage_iff (e : F ≃L[π•œ] E) :
    UniqueDiffOnUniqueDiffOn π•œ (e ⁻¹' s) ↔ UniqueDiffOn π•œ s := by
  rw [← e.image_symm_eq_preimage, e.symm.uniqueDiffOn_image_iff]
Unique Differentiability of Preimage under Continuous Linear Equivalence
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $e : F \simeqL[\mathbb{K}] E$ be a continuous linear equivalence. A subset $s \subseteq E$ has the unique differentiability property on $\mathbb{K}$ if and only if its preimage $e^{-1}(s) \subseteq F$ has the unique differentiability property on $\mathbb{K}$.