Module docstring
{"# Algebraic instances for unit intervals
For suitably structured underlying type α, we exhibit the structure of
the unit intervals (Set.Icc, Set.Ioc, Set.Ioc, and Set.Ioo) from 0 to 1.
Note: Instances for the interval Ici 0 are dealt with in Algebra/Order/Nonneg.lean.
Main definitions
The strongest typeclass provided on each interval is:
* Set.Icc.cancelCommMonoidWithZero
* Set.Ico.commSemigroup
* Set.Ioc.commMonoid
* Set.Ioo.commSemigroup
TODO
- algebraic instances for intervals -1 to 1
- algebraic instances for
Ici 1 - algebraic instances for
(Ioo (-1) 1)ᶜ - provide
distribNeginstances where applicable - prove versions of
mul_le_{left,right}for other intervals - prove versions of the lemmas in
Topology/UnitIntervalwithℝgeneralized to some arbitrary ordered semiring ","### Instances for↥(Set.Icc 0 1)","### Instances for↥(Set.Ico 0 1)","### Instances for↥(Set.Ioc 0 1)","### Instances for↥(Set.Ioo 0 1)"}