Module docstring
{"# Algebra-related equicontinuity criterions "}
{"# Algebra-related equicontinuity criterions "}
equicontinuous_of_equicontinuousAt_one
theorem
{ι G M hom : Type*} [TopologicalSpace G] [UniformSpace M] [Group G] [Group M] [IsTopologicalGroup G] [IsUniformGroup M]
[FunLike hom G M] [MonoidHomClass hom G M] (F : ι → hom) (hf : EquicontinuousAt ((↑) ∘ F) (1 : G)) :
Equicontinuous ((↑) ∘ F)
@[to_additive]
theorem equicontinuous_of_equicontinuousAt_one {ι G M hom : Type*} [TopologicalSpace G]
[UniformSpace M] [Group G] [Group M] [IsTopologicalGroup G] [IsUniformGroup M]
[FunLike hom G M] [MonoidHomClass hom G M] (F : ι → hom)
(hf : EquicontinuousAt ((↑) ∘ F) (1 : G)) :
Equicontinuous ((↑) ∘ F) := by
rw [equicontinuous_iff_continuous]
rw [equicontinuousAt_iff_continuousAt] at hf
let φ : G →* (ι →ᵤ M) :=
{ toFun := swap ((↑) ∘ F)
map_one' := by dsimp [UniformFun]; ext; exact map_one _
map_mul' := fun a b => by dsimp [UniformFun]; ext; exact map_mul _ _ _ }
exact continuous_of_continuousAt_one φ hf
uniformEquicontinuous_of_equicontinuousAt_one
theorem
{ι G M hom : Type*} [UniformSpace G] [UniformSpace M] [Group G] [Group M] [IsUniformGroup G] [IsUniformGroup M]
[FunLike hom G M] [MonoidHomClass hom G M] (F : ι → hom) (hf : EquicontinuousAt ((↑) ∘ F) (1 : G)) :
UniformEquicontinuous ((↑) ∘ F)
@[to_additive]
theorem uniformEquicontinuous_of_equicontinuousAt_one {ι G M hom : Type*} [UniformSpace G]
[UniformSpace M] [Group G] [Group M] [IsUniformGroup G] [IsUniformGroup M]
[FunLike hom G M] [MonoidHomClass hom G M]
(F : ι → hom) (hf : EquicontinuousAt ((↑) ∘ F) (1 : G)) :
UniformEquicontinuous ((↑) ∘ F) := by
rw [uniformEquicontinuous_iff_uniformContinuous]
rw [equicontinuousAt_iff_continuousAt] at hf
let φ : G →* (ι →ᵤ M) :=
{ toFun := swap ((↑) ∘ F)
map_one' := by dsimp [UniformFun]; ext; exact map_one _
map_mul' := fun a b => by dsimp [UniformFun]; ext; exact map_mul _ _ _ }
exact uniformContinuous_of_continuousAt_one φ hf