doc-next-gen

Mathlib.Order.UpperLower.Principal

Module docstring

{"# Principal upper/lower sets

The results in this file all assume that the underlying type is equipped with at least a preorder.

Main declarations

  • UpperSet.Ici: Principal upper set. Set.Ici as an upper set.
  • UpperSet.Ioi: Strict principal upper set. Set.Ioi as an upper set.
  • LowerSet.Iic: Principal lower set. Set.Iic as a lower set.
  • LowerSet.Iio: Strict principal lower set. Set.Iio as a lower set. "}
UpperSet.Ici definition
(a : α) : UpperSet α
Full source
/-- Principal upper set. `Set.Ici` as an upper set. The smallest upper set containing a given
element. -/
nonrec def Ici (a : α) : UpperSet α :=
  ⟨Ici a, isUpperSet_Ici a⟩
Principal upper set
Informal description
The principal upper set generated by an element \( a \) in a preorder \( \alpha \), defined as the set \( [a, \infty) \) of all elements \( x \) in \( \alpha \) such that \( a \leq x \), viewed as an upper set.
UpperSet.Ioi definition
(a : α) : UpperSet α
Full source
/-- Strict principal upper set. `Set.Ioi` as an upper set. -/
nonrec def Ioi (a : α) : UpperSet α :=
  ⟨Ioi a, isUpperSet_Ioi a⟩
Strict principal upper set
Informal description
For an element \( a \) in a preorder \( \alpha \), the strict principal upper set \( \text{Ioi}(a) \) is defined as the left-open right-infinite interval \( (a, \infty) \), consisting of all elements \( x \) in \( \alpha \) such that \( a < x \). This is represented as an upper set in the type `UpperSet α`.
UpperSet.coe_Ici theorem
(a : α) : ↑(Ici a) = Set.Ici a
Full source
@[simp]
theorem coe_Ici (a : α) : ↑(Ici a) = Set.Ici a :=
  rfl
Equality of Principal Upper Set and Interval $[a, \infty)$
Informal description
For any element $a$ in a preorder $\alpha$, the carrier set of the principal upper set $\text{Ici}(a)$ is equal to the left-closed right-infinite interval $[a, \infty)$. In other words, the underlying set of $\text{Ici}(a)$ is precisely $\{x \in \alpha \mid a \leq x\}$.
UpperSet.coe_Ioi theorem
(a : α) : ↑(Ioi a) = Set.Ioi a
Full source
@[simp]
theorem coe_Ioi (a : α) : ↑(Ioi a) = Set.Ioi a :=
  rfl
Equality of Strict Principal Upper Set and Interval $(a, \infty)$
Informal description
For any element $a$ in a preorder $\alpha$, the carrier set of the strict principal upper set $\text{Ioi}(a)$ is equal to the left-open right-infinite interval $(a, \infty)$. In other words, the underlying set of $\text{Ioi}(a)$ is precisely $\{x \in \alpha \mid a < x\}$.
UpperSet.mem_Ici_iff theorem
: b ∈ Ici a ↔ a ≤ b
Full source
@[simp]
theorem mem_Ici_iff : b ∈ Ici ab ∈ Ici a ↔ a ≤ b :=
  Iff.rfl
Membership Criterion for Principal Upper Set: $b \in [a, \infty) \leftrightarrow a \leq b$
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the element $b$ belongs to the principal upper set $\text{Ici}(a)$ if and only if $a \leq b$.
UpperSet.mem_Ioi_iff theorem
: b ∈ Ioi a ↔ a < b
Full source
@[simp]
theorem mem_Ioi_iff : b ∈ Ioi ab ∈ Ioi a ↔ a < b :=
  Iff.rfl
Membership Criterion for Strict Principal Upper Set: $b \in \text{Ioi}(a) \leftrightarrow a < b$
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the element $b$ belongs to the strict principal upper set $\text{Ioi}(a)$ if and only if $a < b$.
UpperSet.map_Ici theorem
(f : α ≃o β) (a : α) : map f (Ici a) = Ici (f a)
Full source
@[simp]
theorem map_Ici (f : α ≃o β) (a : α) : map f (Ici a) = Ici (f a) := by
  ext
  simp
Image of Principal Upper Set under Order Isomorphism: $f([a, \infty)) = [f(a), \infty)$
Informal description
Let $f : \alpha \simeqo \beta$ be an order isomorphism between preorders $\alpha$ and $\beta$. For any element $a \in \alpha$, the image of the principal upper set $[a, \infty)$ under the upper set map induced by $f$ equals the principal upper set $[f(a), \infty)$ in $\beta$. That is, $$ f\big( [a, \infty) \big) = [f(a), \infty). $$
UpperSet.map_Ioi theorem
(f : α ≃o β) (a : α) : map f (Ioi a) = Ioi (f a)
Full source
@[simp]
theorem map_Ioi (f : α ≃o β) (a : α) : map f (Ioi a) = Ioi (f a) := by
  ext
  simp
Image of Strict Principal Upper Set under Order Isomorphism
Informal description
Let $f : \alpha \simeq \beta$ be an order isomorphism between two preorders $\alpha$ and $\beta$. For any element $a \in \alpha$, the image of the strict principal upper set $(a, \infty)$ under the upper set map induced by $f$ is equal to the strict principal upper set $(f(a), \infty)$ in $\beta$. In other words: $$ f\big( (a, \infty) \big) = (f(a), \infty) $$
UpperSet.Ici_le_Ioi theorem
(a : α) : Ici a ≤ Ioi a
Full source
theorem Ici_le_Ioi (a : α) : Ici a ≤ Ioi a :=
  Ioi_subset_Ici_self
Inclusion of Principal Upper Sets: $[a, \infty) \subseteq (a, \infty)$
Informal description
For any element $a$ in a preorder $\alpha$, the principal upper set $[a, \infty)$ is less than or equal to the strict principal upper set $(a, \infty)$ in the lattice of upper sets ordered by reverse inclusion.
UpperSet.Ici_bot theorem
[OrderBot α] : Ici (⊥ : α) = ⊥
Full source
@[simp]
nonrec theorem Ici_bot [OrderBot α] : Ici ( : α) =  :=
  SetLike.coe_injective Ici_bot
Principal Upper Set at Bottom is Bottom Element
Informal description
In a preorder $\alpha$ with a bottom element $\bot$, the principal upper set $[\bot, \infty)$ is equal to the bottom element $\bot$ of the lattice of upper sets ordered by reverse inclusion.
UpperSet.Ioi_top theorem
[OrderTop α] : Ioi (⊤ : α) = ⊤
Full source
@[simp]
nonrec theorem Ioi_top [OrderTop α] : Ioi ( : α) =  :=
  SetLike.coe_injective Ioi_top
Strict Upper Set at Top is Greatest Upper Set: $(⊤, \infty) = ⊤$
Informal description
For any type $\alpha$ with a preorder and a greatest element $\top$, the strict principal upper set $(⊤, \infty)$ is equal to the greatest upper set $\top$ in the lattice of upper sets ordered by reverse inclusion.
UpperSet.Ici_ne_top theorem
: Ici a ≠ ⊤
Full source
@[simp] lemma Ici_ne_top : IciIci a ≠ ⊤ := SetLike.coe_ne_coe.1 nonempty_Ici.ne_empty
Principal Upper Set is Not the Greatest Upper Set
Informal description
For any element $a$ in a preorder $\alpha$, the principal upper set $[a, \infty)$ is not equal to the greatest upper set $\top$.
UpperSet.Ici_lt_top theorem
: Ici a < ⊤
Full source
@[simp] lemma Ici_lt_top : Ici a <  := lt_top_iff_ne_top.2 Ici_ne_top
Principal Upper Set is Strictly Below Top: $[a, \infty) < \top$
Informal description
For any element $a$ in a preorder $\alpha$, the principal upper set $[a, \infty)$ is strictly less than the greatest upper set $\top$ in the reverse inclusion order of upper sets.
UpperSet.le_Ici theorem
: s ≤ Ici a ↔ a ∈ s
Full source
@[simp] lemma le_Ici : s ≤ Ici a ↔ a ∈ s := ⟨fun h ↦ h le_rfl, fun ha ↦ s.upper.Ici_subset ha⟩
Characterization of Upper Set Containment in Principal Upper Set
Informal description
For any upper set $s$ in a preorder $\alpha$ and any element $a \in \alpha$, the upper set $s$ is contained in the principal upper set $[a, \infty)$ if and only if $a$ belongs to $s$.
UpperSet.Ici_injective theorem
: Injective (Ici : α → UpperSet α)
Full source
nonrec lemma Ici_injective : Injective (Ici : α → UpperSet α) := fun _a _b hab ↦
  Ici_injective <| congr_arg ((↑) : _ → Set α) hab
Injectivity of the Principal Upper Set Construction
Informal description
The function that maps each element $a$ in a preorder $\alpha$ to the principal upper set $[a, \infty)$ is injective. That is, for any two elements $a, b \in \alpha$, if $[a, \infty) = [b, \infty)$ as upper sets, then $a = b$.
UpperSet.Ici_inj theorem
: Ici a = Ici b ↔ a = b
Full source
@[simp] lemma Ici_inj : IciIci a = Ici b ↔ a = b := Ici_injective.eq_iff
Equality of Principal Upper Sets Characterizes Element Equality
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the principal upper sets $[a, \infty)$ and $[b, \infty)$ are equal if and only if $a = b$.
UpperSet.Ici_ne_Ici theorem
: Ici a ≠ Ici b ↔ a ≠ b
Full source
lemma Ici_ne_Ici : IciIci a ≠ Ici bIci a ≠ Ici b ↔ a ≠ b := Ici_inj.not
Inequality of Principal Upper Sets Characterizes Element Inequality
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the principal upper sets $[a, \infty)$ and $[b, \infty)$ are not equal if and only if $a \neq b$.
UpperSet.Ici_sup theorem
[SemilatticeSup α] (a b : α) : Ici (a ⊔ b) = Ici a ⊔ Ici b
Full source
@[simp]
theorem Ici_sup [SemilatticeSup α] (a b : α) : Ici (a ⊔ b) = IciIci a ⊔ Ici b :=
  ext Ici_inter_Ici.symm
Supremum of Principal Upper Sets Equals Principal Upper Set of Supremum
Informal description
Let $\alpha$ be a semilattice with a supremum operation $\sqcup$. For any elements $a, b \in \alpha$, the principal upper set generated by $a \sqcup b$ is equal to the supremum of the principal upper sets generated by $a$ and $b$. In other words, $$[a \sqcup b, \infty) = [a, \infty) \sqcup [b, \infty).$$
UpperSet.Ici_sSup theorem
(S : Set α) : Ici (sSup S) = ⨆ a ∈ S, Ici a
Full source
@[simp]
theorem Ici_sSup (S : Set α) : Ici (sSup S) = ⨆ a ∈ S, Ici a :=
  SetLike.ext fun c => by simp only [mem_Ici_iff, mem_iSup_iff, sSup_le_iff]
Supremum of Principal Upper Sets Equals Principal Upper Set of Supremum
Informal description
For any subset $S$ of a complete lattice $\alpha$, the principal upper set generated by the supremum of $S$ is equal to the supremum of the family of principal upper sets generated by each element of $S$. In other words, $[ \sup S, \infty ) = \bigsqcup_{a \in S} [a, \infty)$.
UpperSet.Ici_iSup theorem
(f : ι → α) : Ici (⨆ i, f i) = ⨆ i, Ici (f i)
Full source
@[simp]
theorem Ici_iSup (f : ι → α) : Ici (⨆ i, f i) = ⨆ i, Ici (f i) :=
  SetLike.ext fun c => by simp only [mem_Ici_iff, mem_iSup_iff, iSup_le_iff]
Supremum of Principal Upper Sets Equals Principal Upper Set of Supremum
Informal description
For any family of elements $(f_i)_{i \in \iota}$ in a complete lattice $\alpha$, the principal upper set generated by their supremum $\bigsqcup_i f_i$ is equal to the supremum of the principal upper sets generated by each $f_i$. That is, $$[\bigsqcup_i f_i, \infty) = \bigsqcup_i [f_i, \infty).$$
UpperSet.Ici_iSup₂ theorem
(f : ∀ i, κ i → α) : Ici (⨆ (i) (j), f i j) = ⨆ (i) (j), Ici (f i j)
Full source
theorem Ici_iSup₂ (f : ∀ i, κ i → α) : Ici (⨆ (i) (j), f i j) = ⨆ (i) (j), Ici (f i j) := by
  simp
Supremum of Doubly-Indexed Principal Upper Sets Equals Principal Upper Set of Supremum
Informal description
For any doubly-indexed family of elements $(f_{i,j})_{i \in \iota, j \in \kappa_i}$ in a complete lattice $\alpha$, the principal upper set generated by their supremum $\bigsqcup_{i,j} f_{i,j}$ is equal to the supremum of the principal upper sets generated by each $f_{i,j}$. That is, $$[\bigsqcup_{i,j} f_{i,j}, \infty) = \bigsqcup_{i,j} [f_{i,j}, \infty).$$
LowerSet.Iic definition
(a : α) : LowerSet α
Full source
/-- Principal lower set. `Set.Iic` as a lower set. The smallest lower set containing a given
element. -/
nonrec def Iic (a : α) : LowerSet α :=
  ⟨Iic a, isLowerSet_Iic a⟩
Principal lower set \( (-\infty, a] \)
Informal description
For an element \( a \) in a preorder \( \alpha \), the principal lower set \( \text{Iic } a \) is defined as the left-infinite right-closed interval \( (-\infty, a] \), consisting of all elements \( x \) in \( \alpha \) such that \( x \leq a \). This is the smallest lower set containing \( a \).
LowerSet.Iio definition
(a : α) : LowerSet α
Full source
/-- Strict principal lower set. `Set.Iio` as a lower set. -/
nonrec def Iio (a : α) : LowerSet α :=
  ⟨Iio a, isLowerSet_Iio a⟩
Strict principal lower set $\operatorname{Iio}(a)$
Informal description
For an element $a$ in a preorder $\alpha$, the strict principal lower set $\operatorname{Iio}(a)$ is defined as the lower set consisting of all elements less than $a$, i.e., $\{x \mid x < a\}$.
LowerSet.coe_Iic theorem
(a : α) : ↑(Iic a) = Set.Iic a
Full source
@[simp]
theorem coe_Iic (a : α) : ↑(Iic a) = Set.Iic a :=
  rfl
Principal Lower Set Equals Interval $(-\infty, a]$
Informal description
For any element $a$ in a preorder $\alpha$, the underlying set of the principal lower set $\operatorname{Iic}(a)$ is equal to the left-infinite right-closed interval $(-\infty, a]$, i.e., $\operatorname{Iic}(a) = \{x \mid x \leq a\}$.
LowerSet.coe_Iio theorem
(a : α) : ↑(Iio a) = Set.Iio a
Full source
@[simp]
theorem coe_Iio (a : α) : ↑(Iio a) = Set.Iio a :=
  rfl
Strict Principal Lower Set Equals Interval $(-\infty, a)$
Informal description
For any element $a$ in a preorder $\alpha$, the underlying set of the strict principal lower set $\operatorname{Iio}(a)$ is equal to the left-infinite right-open interval $(-\infty, a)$, i.e., $\operatorname{Iio}(a) = \{x \mid x < a\}$.
LowerSet.mem_Iic_iff theorem
: b ∈ Iic a ↔ b ≤ a
Full source
@[simp]
theorem mem_Iic_iff : b ∈ Iic ab ∈ Iic a ↔ b ≤ a :=
  Iff.rfl
Membership Criterion for Principal Lower Set: $b \in (-\infty, a] \leftrightarrow b \leq a$
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the element $b$ belongs to the principal lower set $\operatorname{Iic}(a)$ if and only if $b \leq a$.
LowerSet.mem_Iio_iff theorem
: b ∈ Iio a ↔ b < a
Full source
@[simp]
theorem mem_Iio_iff : b ∈ Iio ab ∈ Iio a ↔ b < a :=
  Iff.rfl
Membership Criterion for Strict Principal Lower Set: $b \in (-\infty, a) \leftrightarrow b < a$
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the element $b$ belongs to the strict principal lower set $\operatorname{Iio}(a)$ if and only if $b < a$.
LowerSet.map_Iic theorem
(f : α ≃o β) (a : α) : map f (Iic a) = Iic (f a)
Full source
@[simp]
theorem map_Iic (f : α ≃o β) (a : α) : map f (Iic a) = Iic (f a) := by
  ext
  simp
Image of Principal Lower Set under Order Isomorphism: $f((-\infty, a]) = (-\infty, f(a)]$
Informal description
Let $f : \alpha \simeq \beta$ be an order isomorphism between preorders $\alpha$ and $\beta$. For any element $a \in \alpha$, the image of the principal lower set $(-\infty, a]$ under the map induced by $f$ is equal to the principal lower set $(-\infty, f(a)]$ in $\beta$. That is, $$ f\big( (-\infty, a] \big) = (-\infty, f(a)]. $$
LowerSet.map_Iio theorem
(f : α ≃o β) (a : α) : map f (Iio a) = Iio (f a)
Full source
@[simp]
theorem map_Iio (f : α ≃o β) (a : α) : map f (Iio a) = Iio (f a) := by
  ext
  simp
Image of Strict Principal Lower Set under Order Isomorphism: $f(\operatorname{Iio}(a)) = \operatorname{Iio}(f(a))$
Informal description
Let $f : \alpha \simeq \beta$ be an order isomorphism between preorders $\alpha$ and $\beta$. For any element $a \in \alpha$, the image of the strict principal lower set $\operatorname{Iio}(a) = \{x \mid x < a\}$ under $f$ is equal to the strict principal lower set $\operatorname{Iio}(f(a))$ in $\beta$. That is: $$ f(\operatorname{Iio}(a)) = \operatorname{Iio}(f(a)) $$
LowerSet.Ioi_le_Ici theorem
(a : α) : Ioi a ≤ Ici a
Full source
theorem Ioi_le_Ici (a : α) : Ioi a ≤ Ici a :=
  Ioi_subset_Ici_self
Order Relation Between Open and Closed Right-Infinite Intervals: $(a, \infty) \leq [a, \infty)$
Informal description
For any element $a$ in a preorder $\alpha$, the left-open right-infinite interval $(a, \infty)$ is less than or equal to the left-closed right-infinite interval $[a, \infty)$ in the order of lower sets.
LowerSet.Iic_top theorem
[OrderTop α] : Iic (⊤ : α) = ⊤
Full source
@[simp]
nonrec theorem Iic_top [OrderTop α] : Iic ( : α) =  :=
  SetLike.coe_injective Iic_top
Principal Lower Set at Top Equals Entire Set
Informal description
In a partially ordered set $\alpha$ with a greatest element $\top$, the principal lower set $(-\infty, \top]$ is equal to the entire set $\alpha$ (i.e., the top element in the lattice of lower sets).
LowerSet.Iio_bot theorem
[OrderBot α] : Iio (⊥ : α) = ⊥
Full source
@[simp]
nonrec theorem Iio_bot [OrderBot α] : Iio ( : α) =  :=
  SetLike.coe_injective Iio_bot
Strict Lower Set Below Bottom Equals Bottom Element: $\operatorname{Iio}(\bot) = \bot$
Informal description
In an ordered type $\alpha$ with a bottom element $\bot$, the strict principal lower set $\{x \mid x < \bot\}$ is equal to the bottom element of the lattice of lower sets.
LowerSet.Iic_ne_bot theorem
: Iic a ≠ ⊥
Full source
@[simp] lemma Iic_ne_bot : IicIic a ≠ ⊥ := SetLike.coe_ne_coe.1 nonempty_Iic.ne_empty
Non-triviality of principal lower sets: $(-\infty, a] \neq \bot$
Informal description
For any element $a$ in a preorder $\alpha$, the principal lower set $(-\infty, a]$ is not equal to the bottom element of the lattice of lower sets.
LowerSet.bot_lt_Iic theorem
: ⊥ < Iic a
Full source
@[simp] lemma bot_lt_Iic :  < Iic a := bot_lt_iff_ne_bot.2 Iic_ne_bot
Strict Inequality: $\bot < (-\infty, a]$ in Lower Sets Lattice
Informal description
For any element $a$ in a preorder $\alpha$, the bottom element $\bot$ of the lattice of lower sets is strictly less than the principal lower set $(-\infty, a]$.
LowerSet.Iic_le theorem
: Iic a ≤ s ↔ a ∈ s
Full source
@[simp] lemma Iic_le : IicIic a ≤ s ↔ a ∈ s := ⟨fun h ↦ h le_rfl, fun ha ↦ s.lower.Iic_subset ha⟩
Principal Lower Set Containment Criterion: $(-\infty, a] \leq s \leftrightarrow a \in s$
Informal description
For any element $a$ in a preorder $\alpha$ and any lower set $s$ of $\alpha$, the principal lower set $(-\infty, a]$ is contained in $s$ if and only if $a$ belongs to $s$.
LowerSet.Iic_injective theorem
: Injective (Iic : α → LowerSet α)
Full source
nonrec lemma Iic_injective : Injective (Iic : α → LowerSet α) := fun _a _b hab ↦
  Iic_injective <| congr_arg ((↑) : _ → Set α) hab
Injectivity of Principal Lower Set Construction
Informal description
The function that maps each element $a$ in a preorder $\alpha$ to the principal lower set $(-\infty, a]$ is injective. In other words, if $(-\infty, a] = (-\infty, b]$ as lower sets, then $a = b$.
LowerSet.Iic_inj theorem
: Iic a = Iic b ↔ a = b
Full source
@[simp] lemma Iic_inj : IicIic a = Iic b ↔ a = b := Iic_injective.eq_iff
Equality of Principal Lower Sets Characterizes Element Equality
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the principal lower sets $(-\infty, a]$ and $(-\infty, b]$ are equal if and only if $a = b$.
LowerSet.Iic_ne_Iic theorem
: Iic a ≠ Iic b ↔ a ≠ b
Full source
lemma Iic_ne_Iic : IicIic a ≠ Iic bIic a ≠ Iic b ↔ a ≠ b := Iic_inj.not
Inequality of Principal Lower Sets Characterizes Element Inequality
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the principal lower sets $(-\infty, a]$ and $(-\infty, b]$ are not equal if and only if $a \neq b$.
LowerSet.Iic_inf theorem
[SemilatticeInf α] (a b : α) : Iic (a ⊓ b) = Iic a ⊓ Iic b
Full source
@[simp]
theorem Iic_inf [SemilatticeInf α] (a b : α) : Iic (a ⊓ b) = IicIic a ⊓ Iic b :=
  SetLike.coe_injective Iic_inter_Iic.symm
Principal Lower Set of Infimum Equals Infimum of Principal Lower Sets
Informal description
Let $\alpha$ be a semilattice with infima. For any elements $a, b \in \alpha$, the principal lower set generated by the infimum $a \sqcap b$ is equal to the infimum of the principal lower sets generated by $a$ and $b$. In symbols: \[ \text{Iic}(a \sqcap b) = \text{Iic}(a) \sqcap \text{Iic}(b). \]
LowerSet.Iic_sInf theorem
(S : Set α) : Iic (sInf S) = ⨅ a ∈ S, Iic a
Full source
@[simp]
theorem Iic_sInf (S : Set α) : Iic (sInf S) = ⨅ a ∈ S, Iic a :=
  SetLike.ext fun c => by simp only [mem_Iic_iff, mem_iInf₂_iff, le_sInf_iff]
Principal Lower Set of Infimum Equals Infimum of Principal Lower Sets
Informal description
For any subset $S$ of a complete lattice $\alpha$, the principal lower set generated by the infimum of $S$ is equal to the infimum of the principal lower sets generated by each element $a \in S$. In symbols: \[ \text{Iic}\left(\bigwedge S\right) = \bigwedge_{a \in S} \text{Iic}(a). \]
LowerSet.Iic_iInf theorem
(f : ι → α) : Iic (⨅ i, f i) = ⨅ i, Iic (f i)
Full source
@[simp]
theorem Iic_iInf (f : ι → α) : Iic (⨅ i, f i) = ⨅ i, Iic (f i) :=
  SetLike.ext fun c => by simp only [mem_Iic_iff, mem_iInf_iff, le_iInf_iff]
Principal Lower Set of Infimum Equals Infimum of Principal Lower Sets
Informal description
For any family of elements $(f_i)_{i \in \iota}$ in a complete lattice $\alpha$, the principal lower set generated by the infimum of the family is equal to the infimum of the principal lower sets generated by each element $f_i$. In symbols: \[ \text{Iic}\left(\bigwedge_{i} f_i\right) = \bigwedge_{i} \text{Iic}(f_i). \]
LowerSet.Iic_iInf₂ theorem
(f : ∀ i, κ i → α) : Iic (⨅ (i) (j), f i j) = ⨅ (i) (j), Iic (f i j)
Full source
theorem Iic_iInf₂ (f : ∀ i, κ i → α) : Iic (⨅ (i) (j), f i j) = ⨅ (i) (j), Iic (f i j) := by
  simp
Principal Lower Set of Double Infimum Equals Double Infimum of Principal Lower Sets
Informal description
For any family of elements $(f_{i,j})_{i \in \iota, j \in \kappa_i}$ in a complete lattice $\alpha$, the principal lower set generated by the infimum of the family is equal to the infimum of the principal lower sets generated by each element $f_{i,j}$. In symbols: \[ \text{Iic}\left(\bigwedge_{i,j} f_{i,j}\right) = \bigwedge_{i,j} \text{Iic}(f_{i,j}). \]