Module docstring
{"# Lemmas about images of intervals under order isomorphisms. "}
{"# Lemmas about images of intervals under order isomorphisms. "}
OrderIso.preimage_Iic
theorem
(e : α ≃o β) (b : β) : e ⁻¹' Iic b = Iic (e.symm b)
@[simp]
theorem preimage_Iic (e : α ≃o β) (b : β) : e ⁻¹' Iic b = Iic (e.symm b) := by
ext x
simp [← e.le_iff_le]
OrderIso.preimage_Ici
theorem
(e : α ≃o β) (b : β) : e ⁻¹' Ici b = Ici (e.symm b)
@[simp]
theorem preimage_Ici (e : α ≃o β) (b : β) : e ⁻¹' Ici b = Ici (e.symm b) := by
ext x
simp [← e.le_iff_le]
OrderIso.preimage_Iio
theorem
(e : α ≃o β) (b : β) : e ⁻¹' Iio b = Iio (e.symm b)
@[simp]
theorem preimage_Iio (e : α ≃o β) (b : β) : e ⁻¹' Iio b = Iio (e.symm b) := by
ext x
simp [← e.lt_iff_lt]
OrderIso.preimage_Ioi
theorem
(e : α ≃o β) (b : β) : e ⁻¹' Ioi b = Ioi (e.symm b)
@[simp]
theorem preimage_Ioi (e : α ≃o β) (b : β) : e ⁻¹' Ioi b = Ioi (e.symm b) := by
ext x
simp [← e.lt_iff_lt]
OrderIso.preimage_Icc
theorem
(e : α ≃o β) (a b : β) : e ⁻¹' Icc a b = Icc (e.symm a) (e.symm b)
@[simp]
theorem preimage_Icc (e : α ≃o β) (a b : β) : e ⁻¹' Icc a b = Icc (e.symm a) (e.symm b) := by
simp [← Ici_inter_Iic]
OrderIso.preimage_Ico
theorem
(e : α ≃o β) (a b : β) : e ⁻¹' Ico a b = Ico (e.symm a) (e.symm b)
@[simp]
theorem preimage_Ico (e : α ≃o β) (a b : β) : e ⁻¹' Ico a b = Ico (e.symm a) (e.symm b) := by
simp [← Ici_inter_Iio]
OrderIso.preimage_Ioc
theorem
(e : α ≃o β) (a b : β) : e ⁻¹' Ioc a b = Ioc (e.symm a) (e.symm b)
@[simp]
theorem preimage_Ioc (e : α ≃o β) (a b : β) : e ⁻¹' Ioc a b = Ioc (e.symm a) (e.symm b) := by
simp [← Ioi_inter_Iic]
OrderIso.preimage_Ioo
theorem
(e : α ≃o β) (a b : β) : e ⁻¹' Ioo a b = Ioo (e.symm a) (e.symm b)
@[simp]
theorem preimage_Ioo (e : α ≃o β) (a b : β) : e ⁻¹' Ioo a b = Ioo (e.symm a) (e.symm b) := by
simp [← Ioi_inter_Iio]
OrderIso.image_Iic
theorem
(e : α ≃o β) (a : α) : e '' Iic a = Iic (e a)
@[simp]
theorem image_Iic (e : α ≃o β) (a : α) : e '' Iic a = Iic (e a) := by
rw [e.image_eq_preimage, e.symm.preimage_Iic, e.symm_symm]
OrderIso.image_Ici
theorem
(e : α ≃o β) (a : α) : e '' Ici a = Ici (e a)
OrderIso.image_Iio
theorem
(e : α ≃o β) (a : α) : e '' Iio a = Iio (e a)
@[simp]
theorem image_Iio (e : α ≃o β) (a : α) : e '' Iio a = Iio (e a) := by
rw [e.image_eq_preimage, e.symm.preimage_Iio, e.symm_symm]
OrderIso.image_Ioi
theorem
(e : α ≃o β) (a : α) : e '' Ioi a = Ioi (e a)
OrderIso.image_Ioo
theorem
(e : α ≃o β) (a b : α) : e '' Ioo a b = Ioo (e a) (e b)
@[simp]
theorem image_Ioo (e : α ≃o β) (a b : α) : e '' Ioo a b = Ioo (e a) (e b) := by
rw [e.image_eq_preimage, e.symm.preimage_Ioo, e.symm_symm]
OrderIso.image_Ioc
theorem
(e : α ≃o β) (a b : α) : e '' Ioc a b = Ioc (e a) (e b)
@[simp]
theorem image_Ioc (e : α ≃o β) (a b : α) : e '' Ioc a b = Ioc (e a) (e b) := by
rw [e.image_eq_preimage, e.symm.preimage_Ioc, e.symm_symm]
OrderIso.image_Ico
theorem
(e : α ≃o β) (a b : α) : e '' Ico a b = Ico (e a) (e b)
@[simp]
theorem image_Ico (e : α ≃o β) (a b : α) : e '' Ico a b = Ico (e a) (e b) := by
rw [e.image_eq_preimage, e.symm.preimage_Ico, e.symm_symm]
OrderIso.image_Icc
theorem
(e : α ≃o β) (a b : α) : e '' Icc a b = Icc (e a) (e b)
@[simp]
theorem image_Icc (e : α ≃o β) (a b : α) : e '' Icc a b = Icc (e a) (e b) := by
rw [e.image_eq_preimage, e.symm.preimage_Icc, e.symm_symm]
OrderIso.IicTop
definition
{α : Type*} [Preorder α] [OrderTop α] : Iic (⊤ : α) ≃o α
/-- Order isomorphism between `Iic (⊤ : α)` and `α` when `α` has a top element -/
def IicTop {α : Type*} [Preorder α] [OrderTop α] : IicIic (⊤ : α) ≃o α :=
{ @Equiv.subtypeUnivEquiv α (Iic (⊤ : α)) fun _ => le_top with
map_rel_iff' := @fun x y => by rfl }
OrderIso.IciBot
definition
{α : Type*} [Preorder α] [OrderBot α] : Ici (⊥ : α) ≃o α
/-- Order isomorphism between `Ici (⊥ : α)` and `α` when `α` has a bottom element -/
def IciBot {α : Type*} [Preorder α] [OrderBot α] : IciIci (⊥ : α) ≃o α :=
{ @Equiv.subtypeUnivEquiv α (Ici (⊥ : α)) fun _ => bot_le with
map_rel_iff' := @fun x y => by rfl }