doc-next-gen

Mathlib.Order.Interval.Set.OrderEmbedding

Module docstring

{"# Preimages of intervals under order embeddings

In this file we prove that the preimage of an interval in the codomain under an OrderEmbedding is an interval in the domain.

Note that similar statements about images require the range to be order-connected. "}

OrderEmbedding.preimage_Ici theorem
: e ⁻¹' Ici (e x) = Ici x
Full source
@[simp] theorem preimage_Ici : e ⁻¹' Ici (e x) = Ici x := ext fun _ ↦ e.le_iff_le
Preimage of Closed Right-Infinite Interval under Order Embedding
Informal description
For an order embedding $e : \alpha \hookrightarrow \beta$ and any element $x \in \alpha$, the preimage under $e$ of the closed right-infinite interval $[e(x), \infty)$ in $\beta$ is equal to the closed right-infinite interval $[x, \infty)$ in $\alpha$, i.e., $$ e^{-1}\big([e(x), \infty)\big) = [x, \infty). $$
OrderEmbedding.preimage_Iic theorem
: e ⁻¹' Iic (e x) = Iic x
Full source
@[simp] theorem preimage_Iic : e ⁻¹' Iic (e x) = Iic x := ext fun _ ↦ e.le_iff_le
Preimage of Closed Left-Infinite Interval under Order Embedding
Informal description
For an order embedding $e : \alpha \hookrightarrow \beta$ and any element $x \in \alpha$, the preimage under $e$ of the closed left-infinite interval $(-\infty, e(x)]$ in $\beta$ is equal to the closed left-infinite interval $(-\infty, x]$ in $\alpha$, i.e., $$ e^{-1}\big((-\infty, e(x)]\big) = (-\infty, x]. $$
OrderEmbedding.preimage_Ioi theorem
: e ⁻¹' Ioi (e x) = Ioi x
Full source
@[simp] theorem preimage_Ioi : e ⁻¹' Ioi (e x) = Ioi x := ext fun _ ↦ e.lt_iff_lt
Preimage of Strict Right-Infinite Interval under Order Embedding
Informal description
For an order embedding $e : \alpha \hookrightarrow \beta$ and any element $x \in \alpha$, the preimage under $e$ of the strict right-infinite interval $(e(x), \infty)$ in $\beta$ is equal to the strict right-infinite interval $(x, \infty)$ in $\alpha$, i.e., $$ e^{-1}\big((e(x), \infty)\big) = (x, \infty). $$
OrderEmbedding.preimage_Iio theorem
: e ⁻¹' Iio (e x) = Iio x
Full source
@[simp] theorem preimage_Iio : e ⁻¹' Iio (e x) = Iio x := ext fun _ ↦ e.lt_iff_lt
Preimage of Strict Left-Infinite Interval under Order Embedding
Informal description
For an order embedding $e$ and any element $x$ in its domain, the preimage under $e$ of the strict left-infinite interval $(-\infty, e(x))$ in the codomain is equal to the strict left-infinite interval $(-\infty, x)$ in the domain, i.e., $e^{-1}((-\infty, e(x))) = (-\infty, x)$.
OrderEmbedding.preimage_Icc theorem
: e ⁻¹' Icc (e x) (e y) = Icc x y
Full source
@[simp] theorem preimage_Icc : e ⁻¹' Icc (e x) (e y) = Icc x y := by ext; simp
Preimage of Closed Interval under Order Embedding
Informal description
Let $e : \alpha \hookrightarrow \beta$ be an order embedding between partially ordered sets $\alpha$ and $\beta$. For any elements $x, y \in \alpha$, the preimage under $e$ of the closed interval $[e(x), e(y)]$ in $\beta$ is equal to the closed interval $[x, y]$ in $\alpha$. That is, $$ e^{-1}\big([e(x), e(y)]\big) = [x, y]. $$
OrderEmbedding.preimage_Ico theorem
: e ⁻¹' Ico (e x) (e y) = Ico x y
Full source
@[simp] theorem preimage_Ico : e ⁻¹' Ico (e x) (e y) = Ico x y := by ext; simp
Preimage of Closed-Open Interval under Order Embedding
Informal description
Let $e : \alpha \hookrightarrow \beta$ be an order embedding between partially ordered sets $\alpha$ and $\beta$. For any elements $x, y \in \alpha$, the preimage under $e$ of the closed-open interval $[e(x), e(y))$ in $\beta$ is equal to the closed-open interval $[x, y)$ in $\alpha$. That is, $$ e^{-1}\big([e(x), e(y))\big) = [x, y). $$
OrderEmbedding.preimage_Ioc theorem
: e ⁻¹' Ioc (e x) (e y) = Ioc x y
Full source
@[simp] theorem preimage_Ioc : e ⁻¹' Ioc (e x) (e y) = Ioc x y := by ext; simp
Preimage of Open-Closed Interval under Order Embedding
Informal description
Let $e : \alpha \hookrightarrow \beta$ be an order embedding between partially ordered sets $\alpha$ and $\beta$. For any elements $x, y \in \alpha$, the preimage under $e$ of the open-closed interval $(e(x), e(y)]$ in $\beta$ is equal to the open-closed interval $(x, y]$ in $\alpha$. That is, $$ e^{-1}\big((e(x), e(y)]\big) = (x, y]. $$
OrderEmbedding.preimage_Ioo theorem
: e ⁻¹' Ioo (e x) (e y) = Ioo x y
Full source
@[simp] theorem preimage_Ioo : e ⁻¹' Ioo (e x) (e y) = Ioo x y := by ext; simp
Preimage of Open Interval under Order Embedding
Informal description
Let $e : \alpha \hookrightarrow \beta$ be an order embedding between partially ordered sets $\alpha$ and $\beta$. For any elements $x, y \in \alpha$, the preimage under $e$ of the open interval $(e(x), e(y))$ in $\beta$ is equal to the open interval $(x, y)$ in $\alpha$. That is, $$ e^{-1}\big((e(x), e(y))\big) = (x, y). $$
OrderEmbedding.preimage_uIcc theorem
[Lattice β] (e : α ↪o β) (x y : α) : e ⁻¹' (uIcc (e x) (e y)) = uIcc x y
Full source
@[simp] theorem preimage_uIcc [Lattice β] (e : α ↪o β) (x y : α) :
    e ⁻¹' (uIcc (e x) (e y)) = uIcc x y := by
  cases le_total x y <;> simp [*]
Preimage of Lattice Interval under Order Embedding
Informal description
Let $\alpha$ be a partially ordered set and $\beta$ be a lattice. Given an order embedding $e : \alpha \hookrightarrow \beta$ and elements $x, y \in \alpha$, the preimage under $e$ of the interval $[e(x) \sqcap e(y), e(x) \sqcup e(y)]$ in $\beta$ is equal to the interval $[x \sqcap y, x \sqcup y]$ in $\alpha$. That is, $$ e^{-1}\big([e(x) \sqcap e(y), e(x) \sqcup e(y)]\big) = [x \sqcap y, x \sqcup y]. $$
OrderEmbedding.preimage_uIoc theorem
[LinearOrder β] (e : α ↪o β) (x y : α) : e ⁻¹' (uIoc (e x) (e y)) = uIoc x y
Full source
@[simp] theorem preimage_uIoc [LinearOrder β] (e : α ↪o β) (x y : α) :
    e ⁻¹' (uIoc (e x) (e y)) = uIoc x y := by
  cases le_total x y <;> simp [*]
Preimage of Generalized Open-Closed Interval under Order Embedding
Informal description
Let $\alpha$ be a partially ordered set and $\beta$ be a linearly ordered set. Given an order embedding $e : \alpha \hookrightarrow \beta$ and elements $x, y \in \alpha$, the preimage under $e$ of the interval $(e(x) \sqcap e(y), e(x) \sqcup e(y)]$ in $\beta$ is equal to the interval $(x \sqcap y, x \sqcup y]$ in $\alpha$. That is, $$ e^{-1}\big((\min(e(x), e(y)), \max(e(x), e(y))]\big) = (\min(x, y), \max(x, y)]. $$