Module docstring
{"# Fin n forms a bounded linear order
This file contains the linear ordered instance on Fin n.
Fin n is the type whose elements are natural numbers smaller than n.
This file expands on the development in the core library.
Main definitions
Fin.orderIsoSubtype: coercion to{i // i < n}as anOrderIso;Fin.valEmbedding: coercion to natural numbers as anEmbedding;Fin.valOrderEmb: coercion to natural numbers as anOrderEmbedding;Fin.succOrderEmb:Fin.succas anOrderEmbedding;Fin.castLEOrderEmb h:Fin.castLEas anOrderEmbedding, embedFin nintoFin mwhenh : n ≤ m;Fin.castOrderIso:Fin.castas anOrderIso, order isomorphism betweenFin nandFin mprovided thatn = m, see alsoEquiv.finCongr;Fin.castAddOrderEmb m:Fin.castAddas anOrderEmbedding, embedFin nintoFin (n+m);Fin.castSuccOrderEmb:Fin.castSuccas anOrderEmbedding, embedFin nintoFin (n+1);Fin.addNatOrderEmb m i:Fin.addNatas anOrderEmbedding, addmonion the right, generalizesFin.succ;Fin.natAddOrderEmb n i:Fin.natAddas anOrderEmbedding, addsnonion the left;Fin.revOrderIso:Fin.revas anOrderIso, the antitone involution given byi ↦ n-(i+1)","### Instances ","### Extra instances to short-circuit type class resolution
These also prevent non-computable instances being used to construct these instances non-computably. ","### Miscellaneous lemmas ","#### Monotonicity ","#### Order isomorphisms ","#### Order embeddings ","### Uniqueness of order isomorphisms "}