Module docstring
{"# Disjointness of Filter.atTop and Filter.atBot
"}
{"# Disjointness of Filter.atTop and Filter.atBot
"}
Filter.disjoint_atBot_principal_Ioi
theorem
[Preorder α] (x : α) : Disjoint atBot (𝓟 (Ioi x))
theorem disjoint_atBot_principal_Ioi [Preorder α] (x : α) : Disjoint atBot (𝓟 (Ioi x)) :=
disjoint_of_disjoint_of_mem (Iic_disjoint_Ioi le_rfl) (Iic_mem_atBot x) (mem_principal_self _)
Filter.disjoint_atTop_principal_Iio
theorem
[Preorder α] (x : α) : Disjoint atTop (𝓟 (Iio x))
theorem disjoint_atTop_principal_Iio [Preorder α] (x : α) : Disjoint atTop (𝓟 (Iio x)) :=
@disjoint_atBot_principal_Ioi αᵒᵈ _ _
Filter.disjoint_atTop_principal_Iic
theorem
[Preorder α] [NoTopOrder α] (x : α) : Disjoint atTop (𝓟 (Iic x))
theorem disjoint_atTop_principal_Iic [Preorder α] [NoTopOrder α] (x : α) :
Disjoint atTop (𝓟 (Iic x)) :=
disjoint_of_disjoint_of_mem (Iic_disjoint_Ioi le_rfl).symm (Ioi_mem_atTop x)
(mem_principal_self _)
Filter.disjoint_atBot_principal_Ici
theorem
[Preorder α] [NoBotOrder α] (x : α) : Disjoint atBot (𝓟 (Ici x))
theorem disjoint_atBot_principal_Ici [Preorder α] [NoBotOrder α] (x : α) :
Disjoint atBot (𝓟 (Ici x)) :=
@disjoint_atTop_principal_Iic αᵒᵈ _ _ _
Filter.disjoint_pure_atTop
theorem
[Preorder α] [NoTopOrder α] (x : α) : Disjoint (pure x) atTop
theorem disjoint_pure_atTop [Preorder α] [NoTopOrder α] (x : α) : Disjoint (pure x) atTop :=
Disjoint.symm <| (disjoint_atTop_principal_Iic x).mono_right <| le_principal_iff.2 <|
mem_pure.2 right_mem_Iic
Filter.disjoint_pure_atBot
theorem
[Preorder α] [NoBotOrder α] (x : α) : Disjoint (pure x) atBot
theorem disjoint_pure_atBot [Preorder α] [NoBotOrder α] (x : α) : Disjoint (pure x) atBot :=
@disjoint_pure_atTop αᵒᵈ _ _ _
Filter.disjoint_atBot_atTop
theorem
[PartialOrder α] [Nontrivial α] : Disjoint (atBot : Filter α) atTop
theorem disjoint_atBot_atTop [PartialOrder α] [Nontrivial α] :
Disjoint (atBot : Filter α) atTop := by
rcases exists_pair_ne α with ⟨x, y, hne⟩
by_cases hle : x ≤ y
· refine disjoint_of_disjoint_of_mem ?_ (Iic_mem_atBot x) (Ici_mem_atTop y)
exact Iic_disjoint_Ici.2 (hle.lt_of_ne hne).not_le
· refine disjoint_of_disjoint_of_mem ?_ (Iic_mem_atBot y) (Ici_mem_atTop x)
exact Iic_disjoint_Ici.2 hle
Filter.disjoint_atTop_atBot
theorem
[PartialOrder α] [Nontrivial α] : Disjoint (atTop : Filter α) atBot
theorem disjoint_atTop_atBot [PartialOrder α] [Nontrivial α] : Disjoint (atTop : Filter α) atBot :=
disjoint_atBot_atTop.symm