doc-next-gen

Mathlib.Order.Filter.AtTopBot.BigOperators

Module docstring

{"# Two lemmas about limit of Π b ∈ s, f b along

In this file we prove two auxiliary lemmas about Filter.atTop : Filter (Finset _) and ∏ b ∈ s, f b. These lemmas are useful to build the theory of absolutely convergent series. "}

Filter.map_atTop_finset_prod_le_of_prod_eq theorem
{f : α → M} {g : β → M} (h_eq : ∀ u : Finset β, ∃ v : Finset α, ∀ v', v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x ∈ u', g x = ∏ b ∈ v', f b) : (atTop.map fun s : Finset α => ∏ b ∈ s, f b) ≤ atTop.map fun s : Finset β => ∏ x ∈ s, g x
Full source
/-- Let `f` and `g` be two maps to the same commutative monoid. This lemma gives a sufficient
condition for comparison of the filter `atTop.map (fun s ↦ ∏ b ∈ s, f b)` with
`atTop.map (fun s ↦ ∏ b ∈ s, g b)`. This is useful to compare the set of limit points of
`Π b in s, f b` as `s → atTop` with the similar set for `g`. -/
@[to_additive "Let `f` and `g` be two maps to the same commutative additive monoid. This lemma gives
a sufficient condition for comparison of the filter `atTop.map (fun s ↦ ∑ b ∈ s, f b)` with
`atTop.map (fun s ↦ ∑ b ∈ s, g b)`. This is useful to compare the set of limit points of
`∑ b ∈ s, f b` as `s → atTop` with the similar set for `g`."]
theorem Filter.map_atTop_finset_prod_le_of_prod_eq {f : α → M} {g : β → M}
    (h_eq : ∀ u : Finset β,
      ∃ v : Finset α, ∀ v', v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x ∈ u', g x = ∏ b ∈ v', f b) :
    (atTop.map fun s : Finset α => ∏ b ∈ s, f b) ≤
      atTop.map fun s : Finset β => ∏ x ∈ s, g x := by
  classical
    refine ((atTop_basis.map _).le_basis_iff (atTop_basis.map _)).2 fun b _ => ?_
    let ⟨v, hv⟩ := h_eq b
    refine ⟨v, trivial, ?_⟩
    simpa [Finset.image_subset_iff] using hv
Comparison of Product Filters via Partial Product Equality
Informal description
Let $M$ be a commutative monoid, and let $f : \alpha \to M$ and $g : \beta \to M$ be two functions. Suppose that for every finite subset $u \subseteq \beta$, there exists a finite subset $v \subseteq \alpha$ such that for any finite superset $v' \supseteq v$, there exists a finite superset $u' \supseteq u$ satisfying $\prod_{x \in u'} g(x) = \prod_{b \in v'} f(b)$. Then the filter generated by the partial products $\prod_{b \in s} f(b)$ as $s$ ranges over finite subsets of $\alpha$ is finer than the filter generated by the partial products $\prod_{x \in s} g(x)$ as $s$ ranges over finite subsets of $\beta$.
Function.Injective.map_atTop_finset_prod_eq theorem
{g : α → β} (hg : Function.Injective g) {f : β → M} (hf : ∀ x, x ∉ Set.range g → f x = 1) : map (fun s => ∏ i ∈ s, f (g i)) atTop = map (fun s => ∏ i ∈ s, f i) atTop
Full source
/-- Let `g : γ → β` be an injective function and `f : β → α` be a function from the codomain of `g`
to a commutative monoid. Suppose that `f x = 1` outside of the range of `g`. Then the filters
`atTop.map (fun s ↦ ∏ i ∈ s, f (g i))` and `atTop.map (fun s ↦ ∏ i ∈ s, f i)` coincide.

The additive version of this lemma is used to prove the equality `∑' x, f (g x) = ∑' y, f y` under
the same assumptions. -/
@[to_additive]
theorem Function.Injective.map_atTop_finset_prod_eq {g : α → β}
    (hg : Function.Injective g) {f : β → M} (hf : ∀ x, x ∉ Set.range g → f x = 1) :
    map (fun s => ∏ i ∈ s, f (g i)) atTop = map (fun s => ∏ i ∈ s, f i) atTop := by
  haveI := Classical.decEq β
  apply le_antisymm <;> refine map_atTop_finset_prod_le_of_prod_eq fun s => ?_
  · refine ⟨s.preimage g hg.injOn, fun t ht => ?_⟩
    refine ⟨t.image g ∪ s, Finset.subset_union_right, ?_⟩
    rw [← Finset.prod_image hg.injOn]
    refine (prod_subset subset_union_left ?_).symm
    simp only [Finset.mem_union, Finset.mem_image]
    refine fun y hy hyt => hf y (mt ?_ hyt)
    rintro ⟨x, rfl⟩
    exact ⟨x, ht (Finset.mem_preimage.2 <| hy.resolve_left hyt), rfl⟩
  · refine ⟨s.image g, fun t ht => ?_⟩
    simp only [← prod_preimage _ _ hg.injOn _ fun x _ => hf x]
    exact ⟨_, (image_subset_iff_subset_preimage _).1 ht, rfl⟩
Equality of Product Filters for Injective Functions with Trivial Off-Range Values
Informal description
Let $M$ be a commutative monoid, $g : \alpha \to \beta$ be an injective function, and $f : \beta \to M$ be a function such that $f(x) = 1$ for all $x \notin \mathrm{range}(g)$. Then the filters generated by the partial products $\prod_{i \in s} f(g(i))$ and $\prod_{i \in s} f(i)$, as $s$ ranges over finite subsets of $\alpha$ and $\beta$ respectively, coincide.