Module docstring
{"# Casting lemmas for rational numbers involving sums and products "}
{"# Casting lemmas for rational numbers involving sums and products "}
Rat.cast_list_sum
      theorem
     (s : List ℚ) : (↑s.sum : α) = (s.map (↑)).sum
        @[simp, norm_cast]
theorem cast_list_sum (s : List ℚ) : (↑s.sum : α) = (s.map (↑)).sum :=
  map_list_sum (Rat.castHom α) _
        Rat.cast_multiset_sum
      theorem
     (s : Multiset ℚ) : (↑s.sum : α) = (s.map (↑)).sum
        @[simp, norm_cast]
theorem cast_multiset_sum (s : Multiset ℚ) : (↑s.sum : α) = (s.map (↑)).sum :=
  map_multiset_sum (Rat.castHom α) _
        Rat.cast_sum
      theorem
     (s : Finset ι) (f : ι → ℚ) : ∑ i ∈ s, f i = ∑ i ∈ s, (f i : α)
        @[simp, norm_cast]
theorem cast_sum (s : Finset ι) (f : ι → ℚ) : ∑ i ∈ s, f i = ∑ i ∈ s, (f i : α) :=
  map_sum (Rat.castHom α) _ s
        Rat.cast_list_prod
      theorem
     (s : List ℚ) : (↑s.prod : α) = (s.map (↑)).prod
        @[simp, norm_cast]
theorem cast_list_prod (s : List ℚ) : (↑s.prod : α) = (s.map (↑)).prod :=
  map_list_prod (Rat.castHom α) _
        Rat.cast_multiset_prod
      theorem
     (s : Multiset ℚ) : (↑s.prod : α) = (s.map (↑)).prod
        @[simp, norm_cast]
theorem cast_multiset_prod (s : Multiset ℚ) : (↑s.prod : α) = (s.map (↑)).prod :=
  map_multiset_prod (Rat.castHom α) _
        Rat.cast_prod
      theorem
     (s : Finset ι) (f : ι → ℚ) : ∏ i ∈ s, f i = ∏ i ∈ s, (f i : α)
        @[simp, norm_cast]
theorem cast_prod (s : Finset ι) (f : ι → ℚ) : ∏ i ∈ s, f i = ∏ i ∈ s, (f i : α) :=
  map_prod (Rat.castHom α) _ _