Module docstring
{"# Symmetric difference of finite sets
This file concerns the symmetric difference operator s Δ t on finite sets.
Tags
finite sets, finset
","### Symmetric difference "}
{"# Symmetric difference of finite sets
This file concerns the symmetric difference operator s Δ t on finite sets.
finite sets, finset
","### Symmetric difference "}
Finset.mem_symmDiff
theorem
: a ∈ s ∆ t ↔ a ∈ s ∧ a ∉ t ∨ a ∈ t ∧ a ∉ s
theorem mem_symmDiff : a ∈ s ∆ ta ∈ s ∆ t ↔ a ∈ s ∧ a ∉ t ∨ a ∈ t ∧ a ∉ s := by
simp_rw [symmDiff, sup_eq_union, mem_union, mem_sdiff]
Finset.coe_symmDiff
theorem
: (↑(s ∆ t) : Set α) = (s : Set α) ∆ t
@[simp, norm_cast]
theorem coe_symmDiff : (↑(s ∆ t) : Set α) = (s : Set α) ∆ t :=
Set.ext fun x => by simp [mem_symmDiff, Set.mem_symmDiff]
Finset.symmDiff_eq_empty
theorem
: s ∆ t = ∅ ↔ s = t
@[simp] lemma symmDiff_eq_empty : s ∆ ts ∆ t = ∅ ↔ s = t := symmDiff_eq_bot
Finset.symmDiff_nonempty
theorem
: (s ∆ t).Nonempty ↔ s ≠ t
@[simp] lemma symmDiff_nonempty : (s ∆ t).Nonempty ↔ s ≠ t :=
nonempty_iff_ne_empty.trans symmDiff_eq_empty.not
Finset.image_symmDiff
theorem
[DecidableEq β] {f : α → β} (s t : Finset α) (hf : Injective f) : (s ∆ t).image f = s.image f ∆ t.image f
theorem image_symmDiff [DecidableEq β] {f : α → β} (s t : Finset α) (hf : Injective f) :
(s ∆ t).image f = s.image f ∆ t.image f :=
mod_cast Set.image_symmDiff hf s t