Module docstring
{"# Symmetric differences of sets "}
{"# Symmetric differences of sets "}
Set.mem_symmDiff
theorem
: a ∈ s ∆ t ↔ a ∈ s ∧ a ∉ t ∨ a ∈ t ∧ a ∉ s
theorem mem_symmDiff : a ∈ s ∆ ta ∈ s ∆ t ↔ a ∈ s ∧ a ∉ t ∨ a ∈ t ∧ a ∉ s :=
Iff.rfl
Set.symmDiff_def
theorem
(s t : Set α) : s ∆ t = s \ t ∪ t \ s
protected theorem symmDiff_def (s t : Set α) : s ∆ t = s \ ts \ t ∪ t \ s :=
rfl
Set.symmDiff_subset_union
theorem
: s ∆ t ⊆ s ∪ t
theorem symmDiff_subset_union : s ∆ ts ∆ t ⊆ s ∪ t :=
@symmDiff_le_sup (Set α) _ _ _
Set.symmDiff_eq_empty
theorem
: s ∆ t = ∅ ↔ s = t
@[simp]
theorem symmDiff_eq_empty : s ∆ ts ∆ t = ∅ ↔ s = t :=
symmDiff_eq_bot
Set.symmDiff_nonempty
theorem
: (s ∆ t).Nonempty ↔ s ≠ t
@[simp]
theorem symmDiff_nonempty : (s ∆ t).Nonempty ↔ s ≠ t :=
nonempty_iff_ne_empty.trans symmDiff_eq_empty.not
Set.inter_symmDiff_distrib_left
theorem
(s t u : Set α) : s ∩ t ∆ u = (s ∩ t) ∆ (s ∩ u)
theorem inter_symmDiff_distrib_left (s t u : Set α) : s ∩ t ∆ u = (s ∩ t) ∆ (s ∩ u) :=
inf_symmDiff_distrib_left _ _ _
Set.inter_symmDiff_distrib_right
theorem
(s t u : Set α) : s ∆ t ∩ u = (s ∩ u) ∆ (t ∩ u)
theorem inter_symmDiff_distrib_right (s t u : Set α) : s ∆ ts ∆ t ∩ u = (s ∩ u) ∆ (t ∩ u) :=
inf_symmDiff_distrib_right _ _ _
Set.subset_symmDiff_union_symmDiff_left
theorem
(h : Disjoint s t) : u ⊆ s ∆ u ∪ t ∆ u
theorem subset_symmDiff_union_symmDiff_left (h : Disjoint s t) : u ⊆ s ∆ u ∪ t ∆ u :=
h.le_symmDiff_sup_symmDiff_left
Set.subset_symmDiff_union_symmDiff_right
theorem
(h : Disjoint t u) : s ⊆ s ∆ t ∪ s ∆ u
theorem subset_symmDiff_union_symmDiff_right (h : Disjoint t u) : s ⊆ s ∆ t ∪ s ∆ u :=
h.le_symmDiff_sup_symmDiff_right