Module docstring
{"# Adjunctions and limits
A left adjoint preserves colimits (CategoryTheory.Adjunction.leftAdjoint_preservesColimits),
and a right adjoint preserves limits (CategoryTheory.Adjunction.rightAdjoint_preservesLimits).
Equivalences create and reflect (co)limits.
(CategoryTheory.Functor.createsLimitsOfIsEquivalence,
CategoryTheory.Functor.createsColimitsOfIsEquivalence,
CategoryTheory.Functor.reflectsLimits_of_isEquivalence,
CategoryTheory.Functor.reflectsColimits_of_isEquivalence.)
In CategoryTheory.Adjunction.coconesIso we show that
when F ⊣ G,
the functor associating to each Y the cocones over K ⋙ F with cone point Y
is naturally isomorphic to
the functor associating to each Y the cocones over K with cone point G.obj Y.
"}