Module docstring
{"# Infinite sums in (semi)normed groups
In a complete (semi)normed group,
summable_iff_vanishing_norm: a series∑' i, f iis summable if and only if for anyε > 0, there exists a finite setssuch that the sum∑ i ∈ t, f iover any finite settdisjoint withshas norm less thanε;Summable.of_norm_bounded,Summable.of_norm_bounded_eventually: if‖f i‖is bounded above by a summable series∑' i, g i, then∑' i, f iis summable as well; the same is true if the inequality hold only off some finite set.tsum_of_norm_bounded,HasSum.norm_le_of_bounded: if‖f i‖ ≤ g i, where∑' i, g iis a summable series, then‖∑' i, f i‖ ≤ ∑' i, g i.
Tags
infinite series, absolute convergence, normed group "}