Module docstring
{"# Big-operators lemmas about star algebraic operations
These results are kept separate from Algebra.Star.Basic to avoid it needing to import Finset.
"}
{"# Big-operators lemmas about star algebraic operations
These results are kept separate from Algebra.Star.Basic to avoid it needing to import Finset.
"}
star_prod
      theorem
     [CommMonoid R] [StarMul R] {α : Type*} (s : Finset α) (f : α → R) : star (∏ x ∈ s, f x) = ∏ x ∈ s, star (f x)
        @[simp]
theorem star_prod [CommMonoid R] [StarMul R] {α : Type*} (s : Finset α) (f : α → R) :
    star (∏ x ∈ s, f x) = ∏ x ∈ s, star (f x) := map_prod (starMulAut : R ≃* R) _ _
        star_sum
      theorem
     [AddCommMonoid R] [StarAddMonoid R] {α : Type*} (s : Finset α) (f : α → R) : star (∑ x ∈ s, f x) = ∑ x ∈ s, star (f x)
        @[simp]
theorem star_sum [AddCommMonoid R] [StarAddMonoid R] {α : Type*} (s : Finset α) (f : α → R) :
    star (∑ x ∈ s, f x) = ∑ x ∈ s, star (f x) := map_sum (starAddEquiv : R ≃+ R) _ _