Module docstring
{"# Bounds on scalar multiplication of set
This file proves order properties of pointwise operations of sets. "}
{"# Bounds on scalar multiplication of set
This file proves order properties of pointwise operations of sets. "}
smul_lowerBounds_subset_lowerBounds_smul_of_nonneg
      theorem
     (ha : 0 ≤ a) : a • lowerBounds s ⊆ lowerBounds (a • s)
        lemma smul_lowerBounds_subset_lowerBounds_smul_of_nonneg (ha : 0 ≤ a) :
    a • lowerBounds s ⊆ lowerBounds (a • s) :=
  (monotone_smul_left_of_nonneg ha).image_lowerBounds_subset_lowerBounds_image
        smul_upperBounds_subset_upperBounds_smul_of_nonneg
      theorem
     (ha : 0 ≤ a) : a • upperBounds s ⊆ upperBounds (a • s)
        lemma smul_upperBounds_subset_upperBounds_smul_of_nonneg (ha : 0 ≤ a) :
    a • upperBounds s ⊆ upperBounds (a • s) :=
  (monotone_smul_left_of_nonneg ha).image_upperBounds_subset_upperBounds_image
        BddBelow.smul_of_nonneg
      theorem
     (hs : BddBelow s) (ha : 0 ≤ a) : BddBelow (a • s)
        lemma BddBelow.smul_of_nonneg (hs : BddBelow s) (ha : 0 ≤ a) : BddBelow (a • s) :=
  (monotone_smul_left_of_nonneg ha).map_bddBelow hs
        BddAbove.smul_of_nonneg
      theorem
     (hs : BddAbove s) (ha : 0 ≤ a) : BddAbove (a • s)
        lemma BddAbove.smul_of_nonneg (hs : BddAbove s) (ha : 0 ≤ a) : BddAbove (a • s) :=
  (monotone_smul_left_of_nonneg ha).map_bddAbove hs
        lowerBounds_smul_of_pos
      theorem
     (ha : 0 < a) : lowerBounds (a • s) = a • lowerBounds s
        @[simp] lemma lowerBounds_smul_of_pos (ha : 0 < a) : lowerBounds (a • s) = a • lowerBounds s :=
  (OrderIso.smulRight ha).lowerBounds_image
        upperBounds_smul_of_pos
      theorem
     (ha : 0 < a) : upperBounds (a • s) = a • upperBounds s
        @[simp] lemma upperBounds_smul_of_pos (ha : 0 < a) : upperBounds (a • s) = a • upperBounds s :=
  (OrderIso.smulRight ha).upperBounds_image
        bddBelow_smul_iff_of_pos
      theorem
     (ha : 0 < a) : BddBelow (a • s) ↔ BddBelow s
        @[simp] lemma bddBelow_smul_iff_of_pos (ha : 0 < a) : BddBelowBddBelow (a • s) ↔ BddBelow s :=
  (OrderIso.smulRight ha).bddBelow_image
        bddAbove_smul_iff_of_pos
      theorem
     (ha : 0 < a) : BddAbove (a • s) ↔ BddAbove s
        @[simp] lemma bddAbove_smul_iff_of_pos (ha : 0 < a) : BddAboveBddAbove (a • s) ↔ BddAbove s :=
  (OrderIso.smulRight ha).bddAbove_image
        smul_lowerBounds_subset_upperBounds_smul
      theorem
     (ha : a ≤ 0) : a • lowerBounds s ⊆ upperBounds (a • s)
        lemma smul_lowerBounds_subset_upperBounds_smul (ha : a ≤ 0) :
    a • lowerBounds s ⊆ upperBounds (a • s) :=
  (antitone_smul_left ha).image_lowerBounds_subset_upperBounds_image
        smul_upperBounds_subset_lowerBounds_smul
      theorem
     (ha : a ≤ 0) : a • upperBounds s ⊆ lowerBounds (a • s)
        lemma smul_upperBounds_subset_lowerBounds_smul (ha : a ≤ 0) :
    a • upperBounds s ⊆ lowerBounds (a • s) :=
  (antitone_smul_left ha).image_upperBounds_subset_lowerBounds_image
        BddBelow.smul_of_nonpos
      theorem
     (ha : a ≤ 0) (hs : BddBelow s) : BddAbove (a • s)
        lemma BddBelow.smul_of_nonpos (ha : a ≤ 0) (hs : BddBelow s) : BddAbove (a • s) :=
  (antitone_smul_left ha).map_bddBelow hs
        BddAbove.smul_of_nonpos
      theorem
     (ha : a ≤ 0) (hs : BddAbove s) : BddBelow (a • s)
        lemma BddAbove.smul_of_nonpos (ha : a ≤ 0) (hs : BddAbove s) : BddBelow (a • s) :=
  (antitone_smul_left ha).map_bddAbove hs
        lowerBounds_smul_of_neg
      theorem
     (ha : a < 0) : lowerBounds (a • s) = a • upperBounds s
        @[simp] lemma lowerBounds_smul_of_neg (ha : a < 0) : lowerBounds (a • s) = a • upperBounds s :=
  (OrderIso.smulRightDual β ha).upperBounds_image
        upperBounds_smul_of_neg
      theorem
     (ha : a < 0) : upperBounds (a • s) = a • lowerBounds s
        @[simp] lemma upperBounds_smul_of_neg (ha : a < 0) : upperBounds (a • s) = a • lowerBounds s :=
  (OrderIso.smulRightDual β ha).lowerBounds_image
        bddBelow_smul_iff_of_neg
      theorem
     (ha : a < 0) : BddBelow (a • s) ↔ BddAbove s
        @[simp] lemma bddBelow_smul_iff_of_neg (ha : a < 0) : BddBelowBddBelow (a • s) ↔ BddAbove s :=
  (OrderIso.smulRightDual β ha).bddAbove_image
        bddAbove_smul_iff_of_neg
      theorem
     (ha : a < 0) : BddAbove (a • s) ↔ BddBelow s
        @[simp] lemma bddAbove_smul_iff_of_neg (ha : a < 0) : BddAboveBddAbove (a • s) ↔ BddBelow s :=
  (OrderIso.smulRightDual β ha).bddBelow_image