doc-next-gen

Mathlib.Algebra.Order.Module.Pointwise

Module docstring

{"# Bounds on scalar multiplication of set

This file proves order properties of pointwise operations of sets. "}

smul_lowerBounds_subset_lowerBounds_smul_of_nonneg theorem
(ha : 0 ≤ a) : a • lowerBounds s ⊆ lowerBounds (a • s)
Full source
lemma smul_lowerBounds_subset_lowerBounds_smul_of_nonneg (ha : 0 ≤ a) :
    a • lowerBounds s ⊆ lowerBounds (a • s) :=
  (monotone_smul_left_of_nonneg ha).image_lowerBounds_subset_lowerBounds_image
Inclusion of Scalar Multiples of Lower Bounds for Nonnegative Scalars
Informal description
For any scalar $a \geq 0$, the scalar multiplication of the lower bounds of a set $s$ is contained in the lower bounds of the scalar multiplication of $s$, i.e., $a \cdot \text{lowerBounds}(s) \subseteq \text{lowerBounds}(a \cdot s)$.
smul_upperBounds_subset_upperBounds_smul_of_nonneg theorem
(ha : 0 ≤ a) : a • upperBounds s ⊆ upperBounds (a • s)
Full source
lemma smul_upperBounds_subset_upperBounds_smul_of_nonneg (ha : 0 ≤ a) :
    a • upperBounds s ⊆ upperBounds (a • s) :=
  (monotone_smul_left_of_nonneg ha).image_upperBounds_subset_upperBounds_image
Scalar Multiplication Preserves Upper Bounds for Nonnegative Scalars
Informal description
For any real number $a \geq 0$ and any set $s$ in a real vector space, the scalar multiple $a \cdot \text{upperBounds}(s)$ is contained in the set of upper bounds of the scalar multiple $a \cdot s$.
BddBelow.smul_of_nonneg theorem
(hs : BddBelow s) (ha : 0 ≤ a) : BddBelow (a • s)
Full source
lemma BddBelow.smul_of_nonneg (hs : BddBelow s) (ha : 0 ≤ a) : BddBelow (a • s) :=
  (monotone_smul_left_of_nonneg ha).map_bddBelow hs
Nonnegative Scalar Multiplication Preserves Lower Boundedness
Informal description
If a set $s$ is bounded below and $a \geq 0$ is a nonnegative scalar, then the scalar multiple $a \cdot s$ is also bounded below.
BddAbove.smul_of_nonneg theorem
(hs : BddAbove s) (ha : 0 ≤ a) : BddAbove (a • s)
Full source
lemma BddAbove.smul_of_nonneg (hs : BddAbove s) (ha : 0 ≤ a) : BddAbove (a • s) :=
  (monotone_smul_left_of_nonneg ha).map_bddAbove hs
Nonnegative Scalar Multiplication Preserves Boundedness Above
Informal description
For any set $s$ in a real vector space that is bounded above, and for any nonnegative real number $a \geq 0$, the scalar multiple $a \cdot s$ is also bounded above.
lowerBounds_smul_of_pos theorem
(ha : 0 < a) : lowerBounds (a • s) = a • lowerBounds s
Full source
@[simp] lemma lowerBounds_smul_of_pos (ha : 0 < a) : lowerBounds (a • s) = a • lowerBounds s :=
  (OrderIso.smulRight ha).lowerBounds_image
Scalar Multiplication Preserves Lower Bounds for Positive Scalars
Informal description
For a positive scalar $a > 0$, the set of lower bounds of the scaled set $a \cdot s$ is equal to the scaled set of lower bounds of $s$, i.e., $\text{lowerBounds}(a \cdot s) = a \cdot \text{lowerBounds}(s)$.
upperBounds_smul_of_pos theorem
(ha : 0 < a) : upperBounds (a • s) = a • upperBounds s
Full source
@[simp] lemma upperBounds_smul_of_pos (ha : 0 < a) : upperBounds (a • s) = a • upperBounds s :=
  (OrderIso.smulRight ha).upperBounds_image
Upper bounds of scaled set under positive scalar multiplication
Informal description
For a positive scalar $a > 0$, the set of upper bounds of the scaled set $a \cdot s$ is equal to the scaled set of upper bounds of $s$, i.e., $\text{upperBounds}(a \cdot s) = a \cdot \text{upperBounds}(s)$.
bddBelow_smul_iff_of_pos theorem
(ha : 0 < a) : BddBelow (a • s) ↔ BddBelow s
Full source
@[simp] lemma bddBelow_smul_iff_of_pos (ha : 0 < a) : BddBelowBddBelow (a • s) ↔ BddBelow s :=
  (OrderIso.smulRight ha).bddBelow_image
Bounded Below Condition for Positive Scalar Multiplication: $a \cdot s$ is bounded below iff $s$ is bounded below ($a > 0$)
Informal description
For a positive scalar $a > 0$, the set $a \cdot s$ is bounded below if and only if the set $s$ is bounded below.
bddAbove_smul_iff_of_pos theorem
(ha : 0 < a) : BddAbove (a • s) ↔ BddAbove s
Full source
@[simp] lemma bddAbove_smul_iff_of_pos (ha : 0 < a) : BddAboveBddAbove (a • s) ↔ BddAbove s :=
  (OrderIso.smulRight ha).bddAbove_image
Boundedness under positive scalar multiplication: $a \cdot s$ is bounded above iff $s$ is bounded above ($a > 0$)
Informal description
For a positive scalar $a > 0$ and a set $s$ in a real vector space, the set $a \cdot s$ is bounded above if and only if $s$ is bounded above.
smul_lowerBounds_subset_upperBounds_smul theorem
(ha : a ≤ 0) : a • lowerBounds s ⊆ upperBounds (a • s)
Full source
lemma smul_lowerBounds_subset_upperBounds_smul (ha : a ≤ 0) :
    a • lowerBounds s ⊆ upperBounds (a • s) :=
  (antitone_smul_left ha).image_lowerBounds_subset_upperBounds_image
Inclusion of Scalar Multiplication of Lower Bounds into Upper Bounds for Nonpositive Scalars
Informal description
For any scalar $a \leq 0$, the scalar multiplication of the lower bounds of a set $s$ is contained in the upper bounds of the scalar multiplication of $s$, i.e., $$ a \cdot \text{lowerBounds}(s) \subseteq \text{upperBounds}(a \cdot s). $$
smul_upperBounds_subset_lowerBounds_smul theorem
(ha : a ≤ 0) : a • upperBounds s ⊆ lowerBounds (a • s)
Full source
lemma smul_upperBounds_subset_lowerBounds_smul (ha : a ≤ 0) :
    a • upperBounds s ⊆ lowerBounds (a • s) :=
  (antitone_smul_left ha).image_upperBounds_subset_lowerBounds_image
Inclusion of Scalar Multiples of Upper Bounds into Lower Bounds for Nonpositive Scalars
Informal description
For any real number $a \leq 0$ and any set $s$ in a real vector space, the scalar multiple $a \cdot \text{upperBounds}(s)$ is a subset of the lower bounds of the scalar multiple $a \cdot s$.
BddBelow.smul_of_nonpos theorem
(ha : a ≤ 0) (hs : BddBelow s) : BddAbove (a • s)
Full source
lemma BddBelow.smul_of_nonpos (ha : a ≤ 0) (hs : BddBelow s) : BddAbove (a • s) :=
  (antitone_smul_left ha).map_bddBelow hs
Scalar multiplication by nonpositive preserves boundedness from below to above
Informal description
For any scalar $a \leq 0$ and any set $s$ that is bounded below, the set $a \cdot s$ is bounded above.
BddAbove.smul_of_nonpos theorem
(ha : a ≤ 0) (hs : BddAbove s) : BddBelow (a • s)
Full source
lemma BddAbove.smul_of_nonpos (ha : a ≤ 0) (hs : BddAbove s) : BddBelow (a • s) :=
  (antitone_smul_left ha).map_bddAbove hs
Scalar multiplication by nonpositive preserves boundedness from above to below
Informal description
For any scalar $a \leq 0$ and any set $s$ that is bounded above, the set $a \cdot s$ is bounded below.
lowerBounds_smul_of_neg theorem
(ha : a < 0) : lowerBounds (a • s) = a • upperBounds s
Full source
@[simp] lemma lowerBounds_smul_of_neg (ha : a < 0) : lowerBounds (a • s) = a • upperBounds s :=
  (OrderIso.smulRightDual β ha).upperBounds_image
Lower bounds of negatively scaled set equals negative scaling of upper bounds
Informal description
For a real number $a < 0$ and a set $s$ in a real vector space, the set of lower bounds of the scaled set $a \cdot s$ is equal to the scaled set $a \cdot \text{upperBounds}(s)$. That is, $\text{lowerBounds}(a \cdot s) = a \cdot \text{upperBounds}(s)$.
upperBounds_smul_of_neg theorem
(ha : a < 0) : upperBounds (a • s) = a • lowerBounds s
Full source
@[simp] lemma upperBounds_smul_of_neg (ha : a < 0) : upperBounds (a • s) = a • lowerBounds s :=
  (OrderIso.smulRightDual β ha).lowerBounds_image
Upper Bounds of Negatively Scaled Set Equals Scaled Lower Bounds
Informal description
For a negative scalar $a < 0$ and a set $s$ in an ordered vector space, the set of upper bounds of the scaled set $a \cdot s$ is equal to the scaled set of lower bounds of $s$, i.e., \[ \text{upperBounds}(a \cdot s) = a \cdot \text{lowerBounds}(s). \]
bddBelow_smul_iff_of_neg theorem
(ha : a < 0) : BddBelow (a • s) ↔ BddAbove s
Full source
@[simp] lemma bddBelow_smul_iff_of_neg (ha : a < 0) : BddBelowBddBelow (a • s) ↔ BddAbove s :=
  (OrderIso.smulRightDual β ha).bddAbove_image
Bounded Below Scalar Multiplication of Set by Negative Scalar is Equivalent to Bounded Above Original Set
Informal description
For a real number $a < 0$ and a set $s$ in a real vector space, the set $a \cdot s$ is bounded below if and only if $s$ is bounded above.
bddAbove_smul_iff_of_neg theorem
(ha : a < 0) : BddAbove (a • s) ↔ BddBelow s
Full source
@[simp] lemma bddAbove_smul_iff_of_neg (ha : a < 0) : BddAboveBddAbove (a • s) ↔ BddBelow s :=
  (OrderIso.smulRightDual β ha).bddBelow_image
Boundedness of Scalar Multiplication for Negative Scalars: $a < 0 \implies (\text{BddAbove}(a \cdot s) \leftrightarrow \text{BddBelow}(s))$
Informal description
For a scalar $a < 0$ and a set $s$ in a real vector space, the set $a \cdot s$ is bounded above if and only if $s$ is bounded below.