Module docstring
{"# Order isomorphisms and bounds. "}
{"# Order isomorphisms and bounds. "}
OrderIso.upperBounds_image
theorem
{s : Set α} : upperBounds (f '' s) = f '' upperBounds s
theorem upperBounds_image {s : Set α} : upperBounds (f '' s) = f '' upperBounds s :=
Subset.antisymm
(fun x hx =>
⟨f.symm x, fun _ hy => f.le_symm_apply.2 (hx <| mem_image_of_mem _ hy), f.apply_symm_apply x⟩)
f.monotone.image_upperBounds_subset_upperBounds_image
OrderIso.lowerBounds_image
theorem
{s : Set α} : lowerBounds (f '' s) = f '' lowerBounds s
theorem lowerBounds_image {s : Set α} : lowerBounds (f '' s) = f '' lowerBounds s :=
@upperBounds_image αᵒᵈ βᵒᵈ _ _ f.dual _
OrderIso.isLUB_image
theorem
{s : Set α} {x : β} : IsLUB (f '' s) x ↔ IsLUB s (f.symm x)
@[simp]
theorem isLUB_image {s : Set α} {x : β} : IsLUBIsLUB (f '' s) x ↔ IsLUB s (f.symm x) :=
⟨fun h => IsLUB.of_image (by simp) ((f.apply_symm_apply x).symm ▸ h), fun h =>
(IsLUB.of_image (by simp)) <| (f.symm_image_image s).symm ▸ h⟩
OrderIso.isLUB_image'
theorem
{s : Set α} {x : α} : IsLUB (f '' s) (f x) ↔ IsLUB s x
theorem isLUB_image' {s : Set α} {x : α} : IsLUBIsLUB (f '' s) (f x) ↔ IsLUB s x := by
rw [isLUB_image, f.symm_apply_apply]
OrderIso.isGLB_image
theorem
{s : Set α} {x : β} : IsGLB (f '' s) x ↔ IsGLB s (f.symm x)
@[simp]
theorem isGLB_image {s : Set α} {x : β} : IsGLBIsGLB (f '' s) x ↔ IsGLB s (f.symm x) :=
f.dual.isLUB_image
OrderIso.isGLB_image'
theorem
{s : Set α} {x : α} : IsGLB (f '' s) (f x) ↔ IsGLB s x
theorem isGLB_image' {s : Set α} {x : α} : IsGLBIsGLB (f '' s) (f x) ↔ IsGLB s x :=
f.dual.isLUB_image'
OrderIso.isLUB_preimage
theorem
{s : Set β} {x : α} : IsLUB (f ⁻¹' s) x ↔ IsLUB s (f x)
@[simp]
theorem isLUB_preimage {s : Set β} {x : α} : IsLUBIsLUB (f ⁻¹' s) x ↔ IsLUB s (f x) := by
rw [← f.symm_symm, ← image_eq_preimage, isLUB_image]
OrderIso.isLUB_preimage'
theorem
{s : Set β} {x : β} : IsLUB (f ⁻¹' s) (f.symm x) ↔ IsLUB s x
theorem isLUB_preimage' {s : Set β} {x : β} : IsLUBIsLUB (f ⁻¹' s) (f.symm x) ↔ IsLUB s x := by
rw [isLUB_preimage, f.apply_symm_apply]
OrderIso.isGLB_preimage
theorem
{s : Set β} {x : α} : IsGLB (f ⁻¹' s) x ↔ IsGLB s (f x)
@[simp]
theorem isGLB_preimage {s : Set β} {x : α} : IsGLBIsGLB (f ⁻¹' s) x ↔ IsGLB s (f x) :=
f.dual.isLUB_preimage
OrderIso.isGLB_preimage'
theorem
{s : Set β} {x : β} : IsGLB (f ⁻¹' s) (f.symm x) ↔ IsGLB s x
theorem isGLB_preimage' {s : Set β} {x : β} : IsGLBIsGLB (f ⁻¹' s) (f.symm x) ↔ IsGLB s x :=
f.dual.isLUB_preimage'