Informal description
          Let $\bigoplus_{i} \beta_i$ be the direct sum of a family of additive commutative monoids $\{\beta_i\}_{i \in \iota}$. Given a predicate $\text{motive}$ on $\bigoplus_{i} \beta_i$, an element $x \in \bigoplus_{i} \beta_i$, and the following hypotheses:
1. $\text{motive}(0)$ holds (base case),
2. For every $i \in \iota$ and $x \in \beta_i$, $\text{motive}(\text{of}_i(x))$ holds (inclusion case),
3. For any $x, y \in \bigoplus_{i} \beta_i$, if $\text{motive}(x)$ and $\text{motive}(y)$ hold, then $\text{motive}(x + y)$ holds (additive closure),
then $\text{motive}(x)$ holds for all $x \in \bigoplus_{i} \beta_i$.