Module docstring
{"# Results about mapping big operators across ring equivalences "}
{"# Results about mapping big operators across ring equivalences "}
RingEquiv.map_list_prod
      theorem
     [Semiring R] [Semiring S] (f : R ≃+* S) (l : List R) : f l.prod = (l.map f).prod
        protected theorem map_list_prod [Semiring R] [Semiring S] (f : R ≃+* S) (l : List R) :
    f l.prod = (l.map f).prod := map_list_prod f l
        RingEquiv.map_list_sum
      theorem
     [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R ≃+* S) (l : List R) : f l.sum = (l.map f).sum
        protected theorem map_list_sum [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S]
    (f : R ≃+* S) (l : List R) : f l.sum = (l.map f).sum := map_list_sum f l
        RingEquiv.unop_map_list_prod
      theorem
     [Semiring R] [Semiring S] (f : R ≃+* Sᵐᵒᵖ) (l : List R) :
  MulOpposite.unop (f l.prod) = (l.map (MulOpposite.unop ∘ f)).reverse.prod
        /-- An isomorphism into the opposite ring acts on the product by acting on the reversed elements -/
protected theorem unop_map_list_prod [Semiring R] [Semiring S] (f : R ≃+* Sᵐᵒᵖ) (l : List R) :
    MulOpposite.unop (f l.prod) = (l.map (MulOpposite.unopMulOpposite.unop ∘ f)).reverse.prod :=
  unop_map_list_prod f l
        RingEquiv.map_multiset_prod
      theorem
     [CommSemiring R] [CommSemiring S] (f : R ≃+* S) (s : Multiset R) : f s.prod = (s.map f).prod
        protected theorem map_multiset_prod [CommSemiring R] [CommSemiring S] (f : R ≃+* S)
    (s : Multiset R) : f s.prod = (s.map f).prod :=
  map_multiset_prod f s
        RingEquiv.map_multiset_sum
      theorem
     [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R ≃+* S) (s : Multiset R) : f s.sum = (s.map f).sum
        protected theorem map_multiset_sum [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S]
    (f : R ≃+* S) (s : Multiset R) : f s.sum = (s.map f).sum :=
  map_multiset_sum f s
        RingEquiv.map_prod
      theorem
     [CommSemiring R] [CommSemiring S] (g : R ≃+* S) (f : α → R) (s : Finset α) : g (∏ x ∈ s, f x) = ∏ x ∈ s, g (f x)
        protected theorem map_prod [CommSemiring R] [CommSemiring S] (g : R ≃+* S) (f : α → R)
    (s : Finset α) : g (∏ x ∈ s, f x) = ∏ x ∈ s, g (f x) :=
  map_prod g f s
        RingEquiv.map_sum
      theorem
     [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (g : R ≃+* S) (f : α → R) (s : Finset α) :
  g (∑ x ∈ s, f x) = ∑ x ∈ s, g (f x)
        protected theorem map_sum [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (g : R ≃+* S)
    (f : α → R) (s : Finset α) : g (∑ x ∈ s, f x) = ∑ x ∈ s, g (f x) :=
  map_sum g f s