Module docstring
{"# Continuous additive maps are ℝ-linear
In this file we prove that a continuous map f : E →+ F between two topological vector spaces
over ℝ is ℝ-linear
"}
{"# Continuous additive maps are ℝ-linear
In this file we prove that a continuous map f : E →+ F between two topological vector spaces
over ℝ is ℝ-linear
"}
map_real_smul
theorem
{G} [FunLike G E F] [AddMonoidHomClass G E F] (f : G) (hf : Continuous f) (c : ℝ) (x : E) : f (c • x) = c • f x
/-- A continuous additive map between two vector spaces over `ℝ` is `ℝ`-linear. -/
theorem map_real_smul {G} [FunLike G E F] [AddMonoidHomClass G E F] (f : G) (hf : Continuous f)
(c : ℝ) (x : E) :
f (c • x) = c • f x :=
suffices (fun c : ℝ => f (c • x)) = fun c : ℝ => c • f x from congr_fun this c
Rat.isDenseEmbedding_coe_real.dense.equalizer (hf.comp <| continuous_id.smul continuous_const)
(continuous_id.smul continuous_const) (funext fun r => map_ratCast_smul f ℝ ℝ r x)
AddMonoidHom.toRealLinearMap
definition
(f : E →+ F) (hf : Continuous f) : E →L[ℝ] F
/-- Reinterpret a continuous additive homomorphism between two real vector spaces
as a continuous real-linear map. -/
def toRealLinearMap (f : E →+ F) (hf : Continuous f) : E →L[ℝ] F :=
⟨{ toFun := f
map_add' := f.map_add
map_smul' := map_real_smul f hf }, hf⟩
AddMonoidHom.coe_toRealLinearMap
theorem
(f : E →+ F) (hf : Continuous f) : ⇑(f.toRealLinearMap hf) = f
@[simp]
theorem coe_toRealLinearMap (f : E →+ F) (hf : Continuous f) : ⇑(f.toRealLinearMap hf) = f :=
rfl
AddEquiv.toRealLinearEquiv
definition
(e : E ≃+ F) (h₁ : Continuous e) (h₂ : Continuous e.symm) : E ≃L[ℝ] F
/-- Reinterpret a continuous additive equivalence between two real vector spaces
as a continuous real-linear map. -/
def AddEquiv.toRealLinearEquiv (e : E ≃+ F) (h₁ : Continuous e) (h₂ : Continuous e.symm) :
E ≃L[ℝ] F :=
{ e, e.toAddMonoidHom.toRealLinearMap h₁ with }
Real.isScalarTower
instance
[T2Space E] {A : Type*} [TopologicalSpace A] [Ring A] [Algebra ℝ A] [Module A E] [ContinuousSMul ℝ A]
[ContinuousSMul A E] : IsScalarTower ℝ A E
/-- A topological group carries at most one structure of a topological `ℝ`-module, so for any
topological `ℝ`-algebra `A` (e.g. `A = ℂ`) and any topological group that is both a topological
`ℝ`-module and a topological `A`-module, these structures agree. -/
instance (priority := 900) Real.isScalarTower [T2Space E] {A : Type*} [TopologicalSpace A] [Ring A]
[Algebra ℝ A] [Module A E] [ContinuousSMul ℝ A] [ContinuousSMul A E] : IsScalarTower ℝ A E :=
⟨fun r x y => map_real_smul ((smulAddHom A E).flip y) (continuous_id.smul continuous_const) r x⟩