doc-next-gen

Mathlib.Topology.Compactness.Bases

Module docstring

{"# Topological bases in compact sets and compact spaces "}

isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis theorem
(b : ι → Set X) (hb : IsTopologicalBasis (Set.range b)) (hb' : ∀ i, IsCompact (b i)) (U : Set X) : IsCompact U ∧ IsOpen U ↔ ∃ s : Set ι, s.Finite ∧ U = ⋃ i ∈ s, b i
Full source
/-- If `X` has a basis consisting of compact opens, then an open set in `X` is compact open iff
  it is a finite union of some elements in the basis -/
theorem isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis (b : ι → Set X)
    (hb : IsTopologicalBasis (Set.range b)) (hb' : ∀ i, IsCompact (b i)) (U : Set X) :
    IsCompactIsCompact U ∧ IsOpen UIsCompact U ∧ IsOpen U ↔ ∃ s : Set ι, s.Finite ∧ U = ⋃ i ∈ s, b i := by
  constructor
  · exact fun ⟨h₁, h₂⟩ ↦ eq_finite_iUnion_of_isTopologicalBasis_of_isCompact_open _ hb U h₁ h₂
  · rintro ⟨s, hs, rfl⟩
    constructor
    · exact hs.isCompact_biUnion fun i _ => hb' i
    · exact isOpen_biUnion fun i _ => hb.isOpen (Set.mem_range_self _)
Characterization of Compact Open Sets via Finite Unions of Basis Elements
Informal description
Let $X$ be a topological space with a basis $\{b(i)\}_{i \in \iota}$ consisting of compact open sets. Then a subset $U \subseteq X$ is compact and open if and only if it can be expressed as a finite union of some elements from the basis, i.e., there exists a finite subset $s \subseteq \iota$ such that $U = \bigcup_{i \in s} b(i)$.