Module docstring
{"# Congruences on the opposite ring
This file defines the order isomorphism between the congruences on a ring R and the congruences on
the opposite ring Rᵐᵒᵖ.
"}
{"# Congruences on the opposite ring
This file defines the order isomorphism between the congruences on a ring R and the congruences on
the opposite ring Rᵐᵒᵖ.
"}
RingCon.op
      definition
     (c : RingCon R) : RingCon Rᵐᵒᵖ
        
      RingCon.op_iff
      theorem
     {c : RingCon R} {x y : Rᵐᵒᵖ} : c.op x y ↔ c y.unop x.unop
        lemma op_iff {c : RingCon R} {x y : Rᵐᵒᵖ} : c.op x y ↔ c y.unop x.unop := Iff.rfl
        RingCon.unop
      definition
     (c : RingCon Rᵐᵒᵖ) : RingCon R
        
      RingCon.unop_iff
      theorem
     {c : RingCon Rᵐᵒᵖ} {x y : R} : c.unop x y ↔ c (.op y) (.op x)
        lemma unop_iff {c : RingCon Rᵐᵒᵖ} {x y : R} : c.unop x y ↔ c (.op y) (.op x) := Iff.rfl
        RingCon.opOrderIso
      definition
     : RingCon R ≃o RingCon Rᵐᵒᵖ
        /--
The congruences of a ring `R` biject to the congruences of the opposite ring `Rᵐᵒᵖ`.
-/
@[simps]
def opOrderIso : RingConRingCon R ≃o RingCon Rᵐᵒᵖ where
  toFun := op
  invFun := unop
  left_inv _ := rfl
  right_inv _ := rfl
  map_rel_iff' {c d} := by rw [le_def, le_def]; constructor <;> intro h _ _ h' <;> exact h h'