Module docstring
{"# Upper/lower sets and fibrations "}
{"# Upper/lower sets and fibrations "}
Relation.Fibration.isLowerSet_image
      theorem
     [LE α] [LE β] (hf : Fibration (· ≤ ·) (· ≤ ·) f) {s : Set α} (hs : IsLowerSet s) : IsLowerSet (f '' s)
        lemma Fibration.isLowerSet_image [LE α] [LE β] (hf : Fibration (· ≤ ·) (· ≤ ·) f)
    {s : Set α} (hs : IsLowerSet s) : IsLowerSet (f '' s) := by
  rintro _ y' e ⟨x, hx, rfl⟩; obtain ⟨y, e', rfl⟩ := hf e; exact ⟨_, hs e' hx, rfl⟩
        Relation.fibration_iff_isLowerSet_image_Iic
      theorem
     [Preorder α] [LE β] : Fibration (· ≤ ·) (· ≤ ·) f ↔ ∀ x, IsLowerSet (f '' Iic x)
        
      Relation.fibration_iff_isLowerSet_image
      theorem
     [Preorder α] [LE β] : Fibration (· ≤ ·) (· ≤ ·) f ↔ ∀ s, IsLowerSet s → IsLowerSet (f '' s)
        
      Relation.fibration_iff_image_Iic
      theorem
     [Preorder α] [Preorder β] (hf : Monotone f) : Fibration (· ≤ ·) (· ≤ ·) f ↔ ∀ x, f '' Iic x = Iic (f x)
        lemma fibration_iff_image_Iic [Preorder α] [Preorder β] (hf : Monotone f) :
    FibrationFibration (· ≤ ·) (· ≤ ·) f ↔ ∀ x, f '' Iic x = Iic (f x) :=
  ⟨fun H x ↦ le_antisymm (fun _ ⟨_, hy, e⟩ ↦ e ▸ hf hy)
    ((H.isLowerSet_image (isLowerSet_Iic x)).Iic_subset ⟨x, le_rfl, rfl⟩),
    fun H ↦ fibration_iff_isLowerSet_image_Iic.mpr (fun x ↦ (H x).symm ▸ isLowerSet_Iic (f x))⟩
        Relation.Fibration.isUpperSet_image
      theorem
     [LE α] [LE β] (hf : Fibration (· ≥ ·) (· ≥ ·) f) {s : Set α} (hs : IsUpperSet s) : IsUpperSet (f '' s)
        lemma Fibration.isUpperSet_image [LE α] [LE β] (hf : Fibration (· ≥ ·) (· ≥ ·) f)
    {s : Set α} (hs : IsUpperSet s) : IsUpperSet (f '' s) :=
  @Fibration.isLowerSet_image αᵒᵈ βᵒᵈ _ _ _ hf s hs
        Relation.fibration_iff_isUpperSet_image_Ici
      theorem
     [Preorder α] [LE β] : Fibration (· ≥ ·) (· ≥ ·) f ↔ ∀ x, IsUpperSet (f '' Ici x)
        lemma fibration_iff_isUpperSet_image_Ici [Preorder α] [LE β] :
    FibrationFibration (· ≥ ·) (· ≥ ·) f ↔ ∀ x, IsUpperSet (f '' Ici x) :=
  @fibration_iff_isLowerSet_image_Iic αᵒᵈ βᵒᵈ _ _ _
        Relation.fibration_iff_isUpperSet_image
      theorem
     [Preorder α] [LE β] : Fibration (· ≥ ·) (· ≥ ·) f ↔ ∀ s, IsUpperSet s → IsUpperSet (f '' s)
        lemma fibration_iff_isUpperSet_image [Preorder α] [LE β] :
    FibrationFibration (· ≥ ·) (· ≥ ·) f ↔ ∀ s, IsUpperSet s → IsUpperSet (f '' s) :=
  @fibration_iff_isLowerSet_image αᵒᵈ βᵒᵈ _ _ _
        Relation.fibration_iff_image_Ici
      theorem
     [Preorder α] [Preorder β] (hf : Monotone f) : Fibration (· ≥ ·) (· ≥ ·) f ↔ ∀ x, f '' Ici x = Ici (f x)
        lemma fibration_iff_image_Ici [Preorder α] [Preorder β] (hf : Monotone f) :
    FibrationFibration (· ≥ ·) (· ≥ ·) f ↔ ∀ x, f '' Ici x = Ici (f x) :=
  fibration_iff_image_Iic hf.dual