Module docstring
{"# Ordered structures on ULift.{v} α
Once these basic instances are setup, the instances of more complex typeclasses should live next to
the corresponding Prod instances.
"}
{"# Ordered structures on ULift.{v} α
Once these basic instances are setup, the instances of more complex typeclasses should live next to
the corresponding Prod instances.
"}
ULift.instLE_mathlib
instance
[LE α] : LE (ULift.{v} α)
ULift.up_le
theorem
[LE α] {a b : α} : up a ≤ up b ↔ a ≤ b
@[simp] theorem up_le [LE α] {a b : α} : upup a ≤ up b ↔ a ≤ b := Iff.rfl
ULift.down_le
theorem
[LE α] {a b : ULift α} : down a ≤ down b ↔ a ≤ b
ULift.instLT_mathlib
instance
[LT α] : LT (ULift.{v} α)
ULift.up_lt
theorem
[LT α] {a b : α} : up a < up b ↔ a < b
@[simp] theorem up_lt [LT α] {a b : α} : upup a < up b ↔ a < b := Iff.rfl
ULift.down_lt
theorem
[LT α] {a b : ULift α} : down a < down b ↔ a < b
ULift.instBEq_mathlib
instance
[BEq α] : BEq (ULift.{v} α)
ULift.up_beq
theorem
[BEq α] (a b : α) : (up a == up b) = (a == b)
ULift.down_beq
theorem
[BEq α] (a b : ULift α) : (down a == down b) = (a == b)
ULift.instOrd_mathlib
instance
[Ord α] : Ord (ULift.{v} α)
ULift.up_compare
theorem
[Ord α] (a b : α) : compare (up a) (up b) = compare a b
ULift.down_compare
theorem
[Ord α] (a b : ULift α) : compare (down a) (down b) = compare a b
ULift.instMax_mathlib
instance
[Max α] : Max (ULift.{v} α)
ULift.up_sup
theorem
[Max α] (a b : α) : up (a ⊔ b) = up a ⊔ up b
ULift.down_sup
theorem
[Max α] (a b : ULift α) : down (a ⊔ b) = down a ⊔ down b
ULift.instMin_mathlib
instance
[Min α] : Min (ULift.{v} α)
ULift.up_inf
theorem
[Min α] (a b : α) : up (a ⊓ b) = up a ⊓ up b
ULift.down_inf
theorem
[Min α] (a b : ULift α) : down (a ⊓ b) = down a ⊓ down b
ULift.instSDiff_mathlib
instance
[SDiff α] : SDiff (ULift.{v} α)
ULift.up_sdiff
theorem
[SDiff α] (a b : α) : up (a \ b) = up a \ up b
ULift.down_sdiff
theorem
[SDiff α] (a b : ULift α) : down (a \ b) = down a \ down b
@[simp] theorem down_sdiff [SDiff α] (a b : ULift α) : down (a \ b) = downdown a \ down b := rfl
ULift.instHasCompl
instance
[HasCompl α] : HasCompl (ULift.{v} α)
ULift.up_compl
theorem
[HasCompl α] (a : α) : up (aᶜ) = (up a)ᶜ
ULift.down_compl
theorem
[HasCompl α] (a : ULift α) : down aᶜ = (down a)ᶜ
ULift.instOrientedOrd_mathlib
instance
[Ord α] [inst : OrientedOrd α] : OrientedOrd (ULift.{v} α)
ULift.instTransOrd_mathlib
instance
[Ord α] [inst : TransOrd α] : TransOrd (ULift.{v} α)
ULift.instBEqOrd_mathlib
instance
[BEq α] [Ord α] [inst : BEqOrd α] : BEqOrd (ULift.{v} α)
ULift.instLTOrd_mathlib
instance
[LT α] [Ord α] [inst : LTOrd α] : LTOrd (ULift.{v} α)
ULift.instLEOrd_mathlib
instance
[LE α] [Ord α] [inst : LEOrd α] : LEOrd (ULift.{v} α)
ULift.instLawfulOrd_mathlib
instance
[LE α] [LT α] [BEq α] [Ord α] [inst : LawfulOrd α] : LawfulOrd (ULift.{v} α)
ULift.instPreorder
instance
[Preorder α] : Preorder (ULift.{v} α)
instance [Preorder α] : Preorder (ULift.{v} α) :=
Preorder.lift ULift.down
ULift.instPartialOrder
instance
[PartialOrder α] : PartialOrder (ULift.{v} α)
instance [PartialOrder α] : PartialOrder (ULift.{v} α) :=
PartialOrder.lift ULift.down ULift.down_injective