Module docstring
{"# Initial segments and successors
We establish some connections between initial segment embeddings and successors and predecessors. "}
{"# Initial segments and successors
We establish some connections between initial segment embeddings and successors and predecessors. "}
InitialSeg.apply_covBy_apply_iff
      theorem
     (f : α ≤i β) : f a ⋖ f b ↔ a ⋖ b
        @[simp]
theorem apply_covBy_apply_iff (f : α ≤i β) : f a ⋖ f bf a ⋖ f b ↔ a ⋖ b :=
  (isLowerSet_range f).ordConnected.apply_covBy_apply_iff f.toOrderEmbedding
        InitialSeg.apply_wCovBy_apply_iff
      theorem
     (f : α ≤i β) : f a ⩿ f b ↔ a ⩿ b
        @[simp]
theorem apply_wCovBy_apply_iff (f : α ≤i β) : f a ⩿ f bf a ⩿ f b ↔ a ⩿ b := by
  simp [wcovBy_iff_eq_or_covBy]
        InitialSeg.map_succ
      theorem
     [SuccOrder α] [NoMaxOrder α] [SuccOrder β] (f : α ≤i β) (a : α) : f (succ a) = succ (f a)
        theorem map_succ [SuccOrder α] [NoMaxOrder α] [SuccOrder β] (f : α ≤i β) (a : α) :
    f (succ a) = succ (f a) :=
  (f.apply_covBy_apply_iff.2 (covBy_succ a)).succ_eq.symm
        InitialSeg.map_pred
      theorem
     [PredOrder α] [NoMinOrder α] [PredOrder β] (f : α ≤i β) (a : α) : f (pred a) = pred (f a)
        theorem map_pred [PredOrder α] [NoMinOrder α] [PredOrder β] (f : α ≤i β) (a : α) :
    f (pred a) = pred (f a) :=
  (f.apply_covBy_apply_iff.2 (pred_covBy a)).pred_eq.symm
        InitialSeg.isSuccPrelimit_apply_iff
      theorem
     (f : α ≤i β) : IsSuccPrelimit (f a) ↔ IsSuccPrelimit a
        @[simp]
theorem isSuccPrelimit_apply_iff (f : α ≤i β) : IsSuccPrelimitIsSuccPrelimit (f a) ↔ IsSuccPrelimit a := by
  constructor <;> intro h b hb
  · rw [← f.apply_covBy_apply_iff] at hb
    exact h _ hb
  · obtain ⟨c, rfl⟩ := f.mem_range_of_rel hb.lt
    rw [f.apply_covBy_apply_iff] at hb
    exact h _ hb
        InitialSeg.isSuccLimit_apply_iff
      theorem
     (f : α ≤i β) : IsSuccLimit (f a) ↔ IsSuccLimit a
        @[simp]
theorem isSuccLimit_apply_iff (f : α ≤i β) : IsSuccLimitIsSuccLimit (f a) ↔ IsSuccLimit a := by
  simp [IsSuccLimit]
        PrincipalSeg.apply_covBy_apply_iff
      theorem
     (f : α <i β) : f a ⋖ f b ↔ a ⋖ b
        @[simp]
theorem apply_covBy_apply_iff (f : α <i β) : f a ⋖ f bf a ⋖ f b ↔ a ⋖ b :=
  (f : α ≤i β).apply_covBy_apply_iff
        PrincipalSeg.apply_wCovBy_apply_iff
      theorem
     (f : α <i β) : f a ⩿ f b ↔ a ⩿ b
        @[simp]
theorem apply_wCovBy_apply_iff (f : α <i β) : f a ⩿ f bf a ⩿ f b ↔ a ⩿ b :=
  (f : α ≤i β).apply_wCovBy_apply_iff
        PrincipalSeg.map_succ
      theorem
     [SuccOrder α] [NoMaxOrder α] [SuccOrder β] (f : α <i β) (a : α) : f (succ a) = succ (f a)
        
      PrincipalSeg.map_pred
      theorem
     [PredOrder α] [NoMinOrder α] [PredOrder β] (f : α ≤i β) (a : α) : f (pred a) = pred (f a)
        
      PrincipalSeg.isSuccPrelimit_apply_iff
      theorem
     (f : α <i β) : IsSuccPrelimit (f a) ↔ IsSuccPrelimit a
        @[simp]
theorem isSuccPrelimit_apply_iff (f : α <i β) : IsSuccPrelimitIsSuccPrelimit (f a) ↔ IsSuccPrelimit a :=
  (f : α ≤i β).isSuccPrelimit_apply_iff
        PrincipalSeg.isSuccLimit_apply_iff
      theorem
     (f : α <i β) : IsSuccLimit (f a) ↔ IsSuccLimit a
        @[simp]
theorem isSuccLimit_apply_iff (f : α <i β) : IsSuccLimitIsSuccLimit (f a) ↔ IsSuccLimit a :=
  (f : α ≤i β).isSuccLimit_apply_iff