Module docstring
{"# Results about Small on coerced sets
"}
{"# Results about Small on coerced sets
"}
small_subset
      theorem
     {s t : Set α} (hts : t ⊆ s) [Small.{u} s] : Small.{u} t
        theorem small_subset {s t : Set α} (hts : t ⊆ s) [Small.{u} s] : Small.{u} t :=
  small_of_injective (Set.inclusion_injective hts)
        small_powerset
      instance
     (s : Set α) [Small.{u} s] : Small.{u} (𝒫 s)
        instance small_powerset (s : Set α) [Small.{u} s] : Small.{u} (𝒫 s) :=
  small_map (Equiv.Set.powerset s)
        small_setProd
      instance
     (s : Set α) (t : Set β) [Small.{u} s] [Small.{u} t] : Small.{u} (s ×ˢ t : Set (α × β))
        instance small_setProd (s : Set α) (t : Set β) [Small.{u} s] [Small.{u} t] :
    Small.{u} (s ×ˢ t : Set (α × β)) :=
  small_of_injective (Equiv.Set.prod s t).injective
        small_setPi
      instance
     {β : α → Type u2} (s : (a : α) → Set (β a)) [Small.{u} α] [∀ a, Small.{u} (s a)] : Small.{u} (Set.pi Set.univ s)
        instance small_setPi {β : α → Type u2} (s : (a : α) → Set (β a))
    [Small.{u} α] [∀ a, Small.{u} (s a)] : Small.{u} (Set.pi Set.univ s) :=
  small_of_injective (Equiv.Set.univPi s).injective
        small_range
      instance
     (f : α → β) [Small.{u} α] : Small.{u} (Set.range f)
        instance small_range (f : α → β) [Small.{u} α] :
    Small.{u} (Set.range f) :=
  small_of_surjective Set.surjective_onto_range
        small_image
      instance
     (f : α → β) (s : Set α) [Small.{u} s] : Small.{u} (f '' s)
        instance small_image (f : α → β) (s : Set α) [Small.{u} s] :
    Small.{u} (f '' s) :=
  small_of_surjective Set.surjective_onto_image
        small_image2
      instance
     (f : α → β → γ) (s : Set α) (t : Set β) [Small.{u} s] [Small.{u} t] : Small.{u} (Set.image2 f s t)
        instance small_image2 (f : α → β → γ) (s : Set α) (t : Set β) [Small.{u} s] [Small.{u} t] :
    Small.{u} (Set.image2 f s t) := by
  rw [← Set.image_uncurry_prod]
  infer_instance
        small_univ_iff
      theorem
     : Small.{u} (@Set.univ α) ↔ Small.{u} α
        theorem small_univ_iff : SmallSmall.{u} (@Set.univ α) ↔ Small.{u} α :=
  small_congr <| Equiv.Set.univ α
        small_univ
      instance
     [h : Small.{u} α] : Small.{u} (@Set.univ α)
        instance small_univ [h : Small.{u} α] : Small.{u} (@Set.univ α) :=
  small_univ_iff.2 h
        small_union
      instance
     (s t : Set α) [Small.{u} s] [Small.{u} t] : Small.{u} (s ∪ t : Set α)
        instance small_union (s t : Set α) [Small.{u} s] [Small.{u} t] :
    Small.{u} (s ∪ t : Set α) := by
  rw [← Subtype.range_val (s := s), ← Subtype.range_val (s := t), ← Set.Sum.elim_range]
  infer_instance
        small_iUnion
      instance
     [Small.{u} ι] (s : ι → Set α) [∀ i, Small.{u} (s i)] : Small.{u} (⋃ i, s i)
        instance small_iUnion [Small.{u} ι] (s : ι → Set α)
    [∀ i, Small.{u} (s i)] : Small.{u} (⋃ i, s i) :=
  small_of_surjective <| Set.sigmaToiUnion_surjective _
        small_sUnion
      instance
     (s : Set (Set α)) [Small.{u} s] [∀ t : s, Small.{u} t] : Small.{u} (⋃₀ s)
        instance small_sUnion (s : Set (Set α)) [Small.{u} s] [∀ t : s, Small.{u} t] :
    Small.{u} (⋃₀ s) :=
  Set.sUnion_eq_iUnion ▸ small_iUnion _
        small_biUnion
      instance
     (s : Set ι) [Small.{u} s] (f : (i : ι) → i ∈ s → Set α) [∀ i hi, Small.{u} (f i hi)] : Small.{u} (⋃ i, ⋃ hi, f i hi)
        instance small_biUnion (s : Set ι) [Small.{u} s]
    (f : (i : ι) → i ∈ s → Set α) [∀ i hi, Small.{u} (f i hi)] : Small.{u} (⋃ i, ⋃ hi, f i hi) :=
  Set.biUnion_eq_iUnion s f ▸ small_iUnion _
        small_insert
      instance
     (x : α) (s : Set α) [Small.{u} s] : Small.{u} (insert x s : Set α)
        instance small_insert (x : α) (s : Set α) [Small.{u} s] :
    Small.{u} (insert x s : Set α) :=
  Set.insert_eq x s ▸ small_union.{u} {x} s
        small_diff
      instance
     (s t : Set α) [Small.{u} s] : Small.{u} (s \ t : Set α)
        instance small_diff (s t : Set α) [Small.{u} s] : Small.{u} (s \ t : Set α) :=
  small_subset (Set.diff_subset)
        small_sep
      instance
     (s : Set α) (P : α → Prop) [Small.{u} s] : Small.{u} {x | x ∈ s ∧ P x}
        instance small_sep (s : Set α) (P : α → Prop) [Small.{u} s] :
    Small.{u} { x | x ∈ s ∧ P x} :=
  small_subset (Set.sep_subset s P)
        small_inter_of_left
      instance
     (s t : Set α) [Small.{u} s] : Small.{u} (s ∩ t : Set α)
        instance small_inter_of_left (s t : Set α) [Small.{u} s] :
    Small.{u} (s ∩ t : Set α) :=
  small_subset Set.inter_subset_left
        small_inter_of_right
      instance
     (s t : Set α) [Small.{u} t] : Small.{u} (s ∩ t : Set α)
        instance small_inter_of_right (s t : Set α) [Small.{u} t] :
    Small.{u} (s ∩ t : Set α) :=
  small_subset Set.inter_subset_right
        small_iInter
      theorem
     (s : ι → Set α) (i : ι) [Small.{u} (s i)] : Small.{u} (⋂ i, s i)
        theorem small_iInter (s : ι → Set α) (i : ι)
    [Small.{u} (s i)] : Small.{u} (⋂ i, s i) :=
  small_subset (Set.iInter_subset s i)
        small_iInter'
      instance
     [Nonempty ι] (s : ι → Set α) [∀ i, Small.{u} (s i)] : Small.{u} (⋂ i, s i)
        instance small_iInter' [Nonempty ι] (s : ι → Set α)
    [∀ i, Small.{u} (s i)] : Small.{u} (⋂ i, s i) :=
  let ⟨i⟩ : Nonempty ι := inferInstance
  small_iInter s i
        small_sInter
      theorem
     {s : Set (Set α)} {t : Set α} (ht : t ∈ s) [Small.{u} t] : Small.{u} (⋂₀ s)
        theorem small_sInter {s : Set (Set α)} {t : Set α} (ht : t ∈ s)
    [Small.{u} t] : Small.{u} (⋂₀ s) :=
  Set.sInter_eq_iInter ▸ small_iInter _ ⟨t, ht⟩
        small_sInter'
      instance
     {s : Set (Set α)} [Nonempty s] [∀ t : s, Small.{u} t] : Small.{u} (⋂₀ s)
        instance small_sInter' {s : Set (Set α)} [Nonempty s]
    [∀ t : s, Small.{u} t] : Small.{u} (⋂₀ s) :=
  let ⟨t⟩ : Nonempty s := inferInstance
  small_sInter t.prop
        small_biInter
      theorem
     {s : Set ι} {i : ι} (hi : i ∈ s) (f : (i : ι) → i ∈ s → Set α) [Small.{u} (f i hi)] : Small.{u} (⋂ i, ⋂ hi, f i hi)
        theorem small_biInter {s : Set ι} {i : ι} (hi : i ∈ s)
    (f : (i : ι) → i ∈ s → Set α) [Small.{u} (f i hi)] : Small.{u} (⋂ i, ⋂ hi, f i hi) :=
  Set.biInter_eq_iInter s f ▸ small_iInter _ ⟨i, hi⟩
        small_biInter'
      instance
     (s : Set ι) [Nonempty s] (f : (i : ι) → i ∈ s → Set α) [∀ i hi, Small.{u} (f i hi)] : Small.{u} (⋂ i, ⋂ hi, f i hi)
        instance small_biInter' (s : Set ι) [Nonempty s]
    (f : (i : ι) → i ∈ s → Set α) [∀ i hi, Small.{u} (f i hi)] : Small.{u} (⋂ i, ⋂ hi, f i hi) :=
  let ⟨t⟩ : Nonempty s := inferInstance
  small_biInter t.prop f
        small_empty
      theorem
     : Small.{u} (∅ : Set α)
        theorem small_empty : Small.{u} (∅ : Set α) :=
  inferInstance
        small_single
      theorem
     (x : α) : Small.{u} ({ x } : Set α)
        theorem small_single (x : α) : Small.{u} ({x} : Set α) :=
  inferInstance
        small_pair
      theorem
     (x y : α) : Small.{u} ({ x, y } : Set α)
        theorem small_pair (x y : α) : Small.{u} ({x, y} : Set α) :=
  inferInstance