Module docstring
{"# Midpoint of a segment
Main definitions
midpoint R x y: midpoint of the segment[x, y]. We define it forxandyin a module over a ringRwith invertible2.AddMonoidHom.ofMapMidpoint: construct anAddMonoidHomgiven a mapfsuch thatfsends zero to zero and midpoints to midpoints.
Main theorems
midpoint_eq_iff:zis the midpoint of[x, y]if and only ifx + y = z + z,midpoint_unique:midpoint R x ydoes not depend onR;midpoint x yis linear both inxandy;pointReflection_midpoint_left,pointReflection_midpoint_right:Equiv.pointReflection (midpoint R x y)swapsxandy.
We do not mark most lemmas as @[simp] because it is hard to tell which side is simpler.
Tags
midpoint, AddMonoidHom "}