doc-next-gen

Mathlib.Geometry.Manifold.IsManifold.ExtChartAt

Module docstring

{"# Extended charts in smooth manifolds

In a C^n manifold with corners with the model I on (E, H), the charts take values in the model space H. However, we also need to use extended charts taking values in the model vector space E. These extended charts are not PartialHomeomorph as the target is not open in E in general, but we can still register them as PartialEquiv.

Main definitions

  • PartialHomeomorph.extend: compose a partial homeomorphism into H with the model I, to obtain a PartialEquiv into E. Extended charts are an example of this.
  • extChartAt I x: the extended chart at x, obtained by composing the chartAt H x with I. Since the target is in general not open, this is not a partial homeomorphism in general, but we register them as PartialEquivs.

Main results

  • contDiffOn_extend_coord_change: if f and f' lie in the maximal atlas on M, f.extend I ∘ (f'.extend I).symm is continuous on its source

  • contDiffOn_ext_coord_change: for x x : M, the coordinate change (extChartAt I x').symm ≫ extChartAt I x is continuous on its source

  • Manifold.locallyCompact_of_finiteDimensional: a finite-dimensional manifold modelled on a locally compact field (such as ℝ, ℂ or the p-adic numbers) is locally compact

  • LocallyCompactSpace.of_locallyCompact_manifold: a locally compact manifold must be modelled on a locally compact space.
  • FiniteDimensional.of_locallyCompact_manifold: a locally compact manifolds must be modelled on a finite-dimensional space

","We use the name extend_coord_change for (f'.extend I).symm ≫ f.extend I. ","We use the name ext_coord_change for (extChartAt I x').symm ≫ extChartAt I x. "}

PartialHomeomorph.extend definition
: PartialEquiv M E
Full source
/-- Given a chart `f` on a manifold with corners, `f.extend I` is the extended chart to the model
vector space. -/
@[simp, mfld_simps]
def extend : PartialEquiv M E :=
  f.toPartialEquiv ≫ I.toPartialEquiv
Extended chart via model embedding
Informal description
Given a chart $f$ on a manifold with corners modeled on $(E, H)$, the extended chart $f.\text{extend}\, I$ is the composition of $f$ with the model embedding $I : H \to E$. This yields a partial equivalence between the manifold $M$ and the model vector space $E$. More precisely, $f.\text{extend}\, I$ is defined as the composition of the partial equivalence $f$ (a chart on $M$) with the partial equivalence $I$ (the model embedding). The resulting partial equivalence maps points in the domain of $f$ to their corresponding points in $E$ via $I \circ f$, and its inverse maps points back via $f^{-1} \circ I^{-1}$.
PartialHomeomorph.extend_coe theorem
: ⇑(f.extend I) = I ∘ f
Full source
theorem extend_coe : ⇑(f.extend I) = I ∘ f :=
  rfl
Extended Chart Function Composition: $f.\text{extend}\, I = I \circ f$
Informal description
The function associated with the extended chart $f.\text{extend}\, I$ is equal to the composition of the model embedding $I$ with the chart $f$, i.e., $f.\text{extend}\, I = I \circ f$.
PartialHomeomorph.extend_coe_symm theorem
: ⇑(f.extend I).symm = f.symm ∘ I.symm
Full source
theorem extend_coe_symm : ⇑(f.extend I).symm = f.symm ∘ I.symm :=
  rfl
Inverse of Extended Chart as Composition of Inverses
Informal description
The inverse of the extended chart $f.\text{extend}\, I$ is equal to the composition of the inverse chart $f^{-1}$ with the inverse model embedding $I^{-1}$, i.e., $(f.\text{extend}\, I)^{-1} = f^{-1} \circ I^{-1}$.
PartialHomeomorph.extend_source theorem
: (f.extend I).source = f.source
Full source
theorem extend_source : (f.extend I).source = f.source := by
  rw [extend, PartialEquiv.trans_source, I.source_eq, preimage_univ, inter_univ]
Source of Extended Chart Equals Source of Original Chart
Informal description
For a partial homeomorphism $f$ on a manifold with corners modeled on $(E, H)$ and a model embedding $I : H \to E$, the source of the extended chart $f.\text{extend}\, I$ equals the source of $f$, i.e., $$\text{source}(f.\text{extend}\, I) = \text{source}(f).$$
PartialHomeomorph.isOpen_extend_source theorem
: IsOpen (f.extend I).source
Full source
theorem isOpen_extend_source : IsOpen (f.extend I).source := by
  rw [extend_source]
  exact f.open_source
Openness of Extended Chart Source
Informal description
For a partial homeomorphism $f$ on a manifold with corners modeled on $(E, H)$ and a model embedding $I : H \to E$, the source of the extended chart $f.\text{extend}\, I$ is an open subset of the manifold $M$.
PartialHomeomorph.extend_target theorem
: (f.extend I).target = I.symm ⁻¹' f.target ∩ range I
Full source
theorem extend_target : (f.extend I).target = I.symm ⁻¹' f.targetI.symm ⁻¹' f.target ∩ range I := by
  simp_rw [extend, PartialEquiv.trans_target, I.target_eq, I.toPartialEquiv_coe_symm, inter_comm]
Target of Extended Chart as Intersection of Preimage and Range
Informal description
For a partial homeomorphism $f$ on a manifold with corners modeled on $(E, H)$, the target of the extended chart $f.\text{extend}\, I$ is equal to the intersection of the preimage of $f.\text{target}$ under the inverse model embedding $I^{-1}$ and the range of $I$. In other words: $$(f.\text{extend}\, I).\text{target} = I^{-1}(f.\text{target}) \cap \text{range}(I)$$
PartialHomeomorph.extend_target' theorem
: (f.extend I).target = I '' f.target
Full source
theorem extend_target' : (f.extend I).target = I '' f.target := by
  rw [extend, PartialEquiv.trans_target'', I.source_eq, univ_inter, I.toPartialEquiv_coe]
Target of Extended Chart as Image under Model Embedding
Informal description
For a partial homeomorphism $f$ on a manifold with corners modeled on $(E, H)$, the target of the extended chart $f.\text{extend}\, I$ is equal to the image of $f.\text{target}$ under the model embedding $I : H \to E$. In other words: $$(f.\text{extend}\, I).\text{target} = I(f.\text{target}).$$
PartialHomeomorph.isOpen_extend_target theorem
[I.Boundaryless] : IsOpen (f.extend I).target
Full source
lemma isOpen_extend_target [I.Boundaryless] : IsOpen (f.extend I).target := by
  rw [extend_target, I.range_eq_univ, inter_univ]
  exact I.continuous_symm.isOpen_preimage _ f.open_target
Openness of Extended Chart Target for Boundaryless Models
Informal description
For a boundaryless model with corners $I$ embedding a topological space $H$ into a normed vector space $E$, and for any partial homeomorphism $f$ on a manifold modeled on $(E, H)$, the target of the extended chart $f.\text{extend}\, I$ is an open subset of $E$.
PartialHomeomorph.mapsTo_extend theorem
(hs : s ⊆ f.source) : MapsTo (f.extend I) s ((f.extend I).symm ⁻¹' s ∩ range I)
Full source
theorem mapsTo_extend (hs : s ⊆ f.source) :
    MapsTo (f.extend I) s ((f.extend I).symm ⁻¹' s(f.extend I).symm ⁻¹' s ∩ range I) := by
  rw [mapsTo', extend_coe, extend_coe_symm, preimage_comp, ← I.image_eq, image_comp,
    f.image_eq_target_inter_inv_preimage hs]
  exact image_subset _ inter_subset_right
Mapping Property of Extended Charts: $f.\text{extend}\, I$ Preserves Preimage-Range Intersection
Informal description
Let $f$ be a partial homeomorphism from a manifold $M$ to the model space $H$, and let $I$ be a model with corners embedding $H$ into the vector space $E$. For any subset $s \subseteq M$ contained in the source of $f$, the extended chart $f.\text{extend}\, I$ maps $s$ into the intersection of the preimage of $s$ under $(f.\text{extend}\, I)^{-1}$ with the range of $I$. In symbols, if $s \subseteq f.\text{source}$, then: $$ f.\text{extend}\, I(s) \subseteq (f.\text{extend}\, I)^{-1}(s) \cap \text{range}(I). $$
PartialHomeomorph.extend_left_inv theorem
{x : M} (hxf : x ∈ f.source) : (f.extend I).symm (f.extend I x) = x
Full source
theorem extend_left_inv {x : M} (hxf : x ∈ f.source) : (f.extend I).symm (f.extend I x) = x :=
  (f.extend I).left_inv <| by rwa [f.extend_source]
Inverse Property of Extended Chart on Manifold with Corners
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $f$ be a chart on $M$. For any point $x$ in the source of $f$, the composition of the extended chart $f.\text{extend}\, I$ with its inverse maps $x$ back to itself, i.e., $$(f.\text{extend}\, I)^{-1} \circ (f.\text{extend}\, I)(x) = x.$$
PartialHomeomorph.extend_left_inv' theorem
(ht : t ⊆ f.source) : ((f.extend I).symm ∘ (f.extend I)) '' t = t
Full source
/-- Variant of `f.extend_left_inv I`, stated in terms of images. -/
lemma extend_left_inv' (ht : t ⊆ f.source) : ((f.extend I).symm ∘ (f.extend I)) '' t = t :=
  EqOn.image_eq_self (fun _ hx ↦ f.extend_left_inv (ht hx))
Image Preservation Property of Extended Chart Composition on Manifold Subset
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $f$ be a chart on $M$. For any subset $t \subseteq f.\text{source}$, the image of $t$ under the composition $(f.\text{extend}\, I)^{-1} \circ (f.\text{extend}\, I)$ equals $t$ itself, i.e., $$(f.\text{extend}\, I)^{-1} \circ (f.\text{extend}\, I)(t) = t.$$
PartialHomeomorph.extend_source_mem_nhds theorem
{x : M} (h : x ∈ f.source) : (f.extend I).source ∈ 𝓝 x
Full source
theorem extend_source_mem_nhds {x : M} (h : x ∈ f.source) : (f.extend I).source ∈ 𝓝 x :=
  (isOpen_extend_source f).mem_nhds <| by rwa [f.extend_source]
Neighborhood Property of Extended Chart Source
Informal description
For any point $x$ in the source of a partial homeomorphism $f$ on a manifold $M$ with corners modeled on $(E, H)$, the source of the extended chart $f.\text{extend}\, I$ is a neighborhood of $x$ in $M$.
PartialHomeomorph.extend_source_mem_nhdsWithin theorem
{x : M} (h : x ∈ f.source) : (f.extend I).source ∈ 𝓝[s] x
Full source
theorem extend_source_mem_nhdsWithin {x : M} (h : x ∈ f.source) : (f.extend I).source ∈ 𝓝[s] x :=
  mem_nhdsWithin_of_mem_nhds <| extend_source_mem_nhds f h
Neighborhood Property of Extended Chart Source Within a Subset
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $f$ be a chart on $M$. For any point $x$ in the source of $f$ and any subset $s \subseteq M$, the source of the extended chart $f.\text{extend}\, I$ is a neighborhood of $x$ within $s$. In other words, if $x \in f.\text{source}$, then there exists a neighborhood $U$ of $x$ in $M$ such that $U \cap s \subseteq (f.\text{extend}\, I).\text{source}$.
PartialHomeomorph.continuousAt_extend theorem
{x : M} (h : x ∈ f.source) : ContinuousAt (f.extend I) x
Full source
theorem continuousAt_extend {x : M} (h : x ∈ f.source) : ContinuousAt (f.extend I) x :=
  (continuousOn_extend f).continuousAt <| extend_source_mem_nhds f h
Continuity of Extended Chart at a Point in its Source
Informal description
For any point $x$ in the source of a partial homeomorphism $f$ on a manifold $M$ with corners modeled on $(E, H)$, the extended chart $f.\text{extend}\, I$ is continuous at $x$. Here, $f.\text{extend}\, I$ denotes the composition of $f$ with the model embedding $I \colon H \to E$, which maps points from the manifold to the model vector space $E$.
PartialHomeomorph.map_extend_nhds theorem
{x : M} (hy : x ∈ f.source) : map (f.extend I) (𝓝 x) = 𝓝[range I] f.extend I x
Full source
theorem map_extend_nhds {x : M} (hy : x ∈ f.source) :
    map (f.extend I) (𝓝 x) = 𝓝[range I] f.extend I x := by
  rwa [extend_coe, comp_apply, ← I.map_nhds_eq, ← f.map_nhds_eq, map_map]
Neighborhood Filter Preservation under Extended Chart
Informal description
For any point $x$ in the source of the chart $f$ on a manifold $M$ modeled on $(E, H)$, the pushforward of the neighborhood filter $\mathcal{N}(x)$ under the extended chart $f.\text{extend}\, I$ equals the neighborhood filter of $(f.\text{extend}\, I)(x)$ restricted to the range of the model embedding $I$. In other words: $$ (f.\text{extend}\, I)_*(\mathcal{N}(x)) = \mathcal{N}_{(f.\text{extend}\, I)(x)}|_{\text{range}(I)} $$ where $f.\text{extend}\, I = I \circ f$ is the composition of the chart $f$ with the model embedding $I \colon H \to E$.
PartialHomeomorph.map_extend_nhds_of_mem_interior_range theorem
{x : M} (hx : x ∈ f.source) (h'x : f.extend I x ∈ interior (range I)) : map (f.extend I) (𝓝 x) = 𝓝 (f.extend I x)
Full source
theorem map_extend_nhds_of_mem_interior_range {x : M} (hx : x ∈ f.source)
    (h'x : f.extend I x ∈ interior (range I)) :
    map (f.extend I) (𝓝 x) = 𝓝 (f.extend I x) := by
  rw [f.map_extend_nhds hx, nhdsWithin_eq_nhds]
  exact mem_of_superset (isOpen_interior.mem_nhds h'x) interior_subset
Neighborhood Filter Preservation under Extended Chart for Interior Points
Informal description
For a point $x$ in the source of a chart $f$ on a manifold $M$ modeled on $(E, H)$, if the image of $x$ under the extended chart $f.\text{extend}\, I$ lies in the interior of the range of the model embedding $I \colon H \to E$, then the pushforward of the neighborhood filter $\mathcal{N}(x)$ under $f.\text{extend}\, I$ equals the full neighborhood filter of $(f.\text{extend}\, I)(x)$ in $E$. In other words, if $x \in f.\text{source}$ and $f.\text{extend}\, I(x) \in \text{interior}(\text{range}(I))$, then: $$ (f.\text{extend}\, I)_*(\mathcal{N}(x)) = \mathcal{N}(f.\text{extend}\, I(x)). $$
PartialHomeomorph.map_extend_nhds_of_boundaryless theorem
[I.Boundaryless] {x : M} (hx : x ∈ f.source) : map (f.extend I) (𝓝 x) = 𝓝 (f.extend I x)
Full source
theorem map_extend_nhds_of_boundaryless [I.Boundaryless] {x : M} (hx : x ∈ f.source) :
    map (f.extend I) (𝓝 x) = 𝓝 (f.extend I x) := by
  rw [f.map_extend_nhds hx, I.range_eq_univ, nhdsWithin_univ]
Neighborhood Filter Preservation under Extended Chart for Boundaryless Models
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ with boundaryless model $I$, and let $f$ be a chart on $M$. For any point $x$ in the source of $f$, the pushforward of the neighborhood filter $\mathcal{N}(x)$ under the extended chart $f.\text{extend}\, I$ equals the neighborhood filter of $(f.\text{extend}\, I)(x)$. In other words: $$ (f.\text{extend}\, I)_*(\mathcal{N}(x)) = \mathcal{N}((f.\text{extend}\, I)(x)) $$ where $f.\text{extend}\, I = I \circ f$ is the composition of the chart $f$ with the model embedding $I \colon H \to E$.
PartialHomeomorph.extend_target_mem_nhdsWithin theorem
{y : M} (hy : y ∈ f.source) : (f.extend I).target ∈ 𝓝[range I] f.extend I y
Full source
theorem extend_target_mem_nhdsWithin {y : M} (hy : y ∈ f.source) :
    (f.extend I).target ∈ 𝓝[range I] f.extend I y := by
  rw [← PartialEquiv.image_source_eq_target, ← map_extend_nhds f hy]
  exact image_mem_map (extend_source_mem_nhds _ hy)
Neighborhood Property of Extended Chart Target Within Range
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ with model embedding $I : H \to E$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$, the target of the extended chart $f.\text{extend}\, I$ is a neighborhood of $(f.\text{extend}\, I)(y)$ within the range of $I$. In other words: $$ (f.\text{extend}\, I).\text{target} \in \mathcal{N}_{(I \circ f)(y)}|_{\text{range}(I)} $$ where $f.\text{extend}\, I = I \circ f$ is the extended chart.
PartialHomeomorph.extend_image_target_mem_nhds theorem
{x : M} (hx : x ∈ f.source) : I '' f.target ∈ 𝓝[range I] (f.extend I) x
Full source
lemma extend_image_target_mem_nhds {x : M} (hx : x ∈ f.source) :
    I '' f.targetI '' f.target ∈ 𝓝[range I] (f.extend I) x := by
  rw [← f.map_extend_nhds hx, Filter.mem_map,
    f.extend_coe, Set.preimage_comp, I.preimage_image f.target]
  exact (f.continuousAt hx).preimage_mem_nhds (f.open_target.mem_nhds (f.map_source hx))
Neighborhood Property of Extended Chart Target Image: $I(f.\text{target})$ is a Neighborhood Within Range of $I$
Informal description
Let $M$ be a manifold with corners modeled on $(E,H)$, $I : H \to E$ be a model with corners, and $f$ be a chart on $M$. For any point $x$ in the source of $f$, the image of $f$'s target under $I$ is a neighborhood of $(f.\text{extend}\, I)(x)$ within the range of $I$, i.e., $$ I(f.\text{target}) \in \mathcal{N}_{(I \circ f)(x)}|_{\text{range}(I)} $$ where $f.\text{extend}\, I = I \circ f$ is the extended chart.
PartialHomeomorph.extend_image_nhd_mem_nhds_of_boundaryless theorem
[I.Boundaryless] {x} (hx : x ∈ f.source) {s : Set M} (h : s ∈ 𝓝 x) : (f.extend I) '' s ∈ 𝓝 ((f.extend I) x)
Full source
theorem extend_image_nhd_mem_nhds_of_boundaryless [I.Boundaryless] {x} (hx : x ∈ f.source)
    {s : Set M} (h : s ∈ 𝓝 x) : (f.extend I) '' s(f.extend I) '' s ∈ 𝓝 ((f.extend I) x) := by
  rw [← f.map_extend_nhds_of_boundaryless hx, Filter.mem_map]
  filter_upwards [h] using subset_preimage_image (f.extend I) s
Neighborhood preservation under extended charts for boundaryless models
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ with a boundaryless model $I \colon H \to E$, and let $f$ be a chart on $M$. For any point $x$ in the source of $f$ and any neighborhood $s$ of $x$ in $M$, the image of $s$ under the extended chart $f.\text{extend}\, I = I \circ f$ is a neighborhood of $(I \circ f)(x)$ in $E$.
PartialHomeomorph.extend_image_nhd_mem_nhds_of_mem_interior_range theorem
{x} (hx : x ∈ f.source) (h'x : f.extend I x ∈ interior (range I)) {s : Set M} (h : s ∈ 𝓝 x) : (f.extend I) '' s ∈ 𝓝 ((f.extend I) x)
Full source
theorem extend_image_nhd_mem_nhds_of_mem_interior_range {x} (hx : x ∈ f.source)
    (h'x : f.extend I x ∈ interior (range I)) {s : Set M} (h : s ∈ 𝓝 x) :
    (f.extend I) '' s(f.extend I) '' s ∈ 𝓝 ((f.extend I) x) := by
  rw [← f.map_extend_nhds_of_mem_interior_range hx h'x, Filter.mem_map]
  filter_upwards [h] using subset_preimage_image (f.extend I) s
Neighborhood Preservation under Extended Chart for Interior Points
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $f$ be a chart on $M$ with model embedding $I \colon H \to E$. For a point $x$ in the source of $f$ such that the extended chart value $f.\text{extend}\, I(x)$ lies in the interior of the range of $I$, and for any neighborhood $s$ of $x$ in $M$, the image of $s$ under the extended chart $f.\text{extend}\, I$ is a neighborhood of $f.\text{extend}\, I(x)$ in $E$. In other words, if $x \in f.\text{source}$ and $f.\text{extend}\, I(x) \in \text{interior}(\text{range}(I))$, then for any $s \in \mathcal{N}(x)$, we have: $$ (f.\text{extend}\, I)(s) \in \mathcal{N}((f.\text{extend}\, I)(x)). $$
PartialHomeomorph.extend_target_subset_range theorem
: (f.extend I).target ⊆ range I
Full source
theorem extend_target_subset_range : (f.extend I).target ⊆ range I := by simp only [mfld_simps]
Extended Chart Target Subset of Model Range
Informal description
For any partial homeomorphism $f$ on a manifold $M$ with model $I \colon H \to E$, the target of the extended chart $f.\text{extend}\, I$ is a subset of the range of $I$. In other words, $(f.\text{extend}\, I).\text{target} \subseteq \text{range}(I)$.
PartialHomeomorph.interior_extend_target_subset_interior_range theorem
: interior (f.extend I).target ⊆ interior (range I)
Full source
lemma interior_extend_target_subset_interior_range :
    interiorinterior (f.extend I).target ⊆ interior (range I) := by
  rw [f.extend_target, interior_inter, (f.open_target.preimage I.continuous_symm).interior_eq]
  exact inter_subset_right
Interior of Extended Chart Target is Subset of Interior of Model Range
Informal description
For any partial homeomorphism $f$ on a manifold with corners modeled on $(E, H)$, the interior of the target of the extended chart $f.\text{extend}\, I$ is a subset of the interior of the range of the model embedding $I \colon H \to E$, i.e., $$\text{interior}((f.\text{extend}\, I).\text{target}) \subseteq \text{interior}(\text{range}(I)).$$
PartialHomeomorph.mem_interior_extend_target theorem
{y : H} (hy : y ∈ f.target) (hy' : I y ∈ interior (range I)) : I y ∈ interior (f.extend I).target
Full source
/-- If `y ∈ f.target` and `I y ∈ interior (range I)`,
then `I y` is an interior point of `(I ∘ f).target`. -/
lemma mem_interior_extend_target {y : H} (hy : y ∈ f.target)
    (hy' : I y ∈ interior (range I)) : I y ∈ interior (f.extend I).target := by
  rw [f.extend_target, interior_inter, (f.open_target.preimage I.continuous_symm).interior_eq,
    mem_inter_iff, mem_preimage]
  exact ⟨mem_of_eq_of_mem (I.left_inv (y)) hy, hy'⟩
Interior Point Preservation under Extended Chart
Informal description
Let $f$ be a partial homeomorphism on a manifold with corners modeled on $(E, H)$, and let $I \colon H \to E$ be the model embedding. For any point $y \in f.\text{target}$ such that $I(y)$ lies in the interior of $\text{range}(I)$, it follows that $I(y)$ is an interior point of $(f.\text{extend}\, I).\text{target}$.
PartialHomeomorph.nhdsWithin_extend_target_eq theorem
{y : M} (hy : y ∈ f.source) : 𝓝[(f.extend I).target] f.extend I y = 𝓝[range I] f.extend I y
Full source
theorem nhdsWithin_extend_target_eq {y : M} (hy : y ∈ f.source) :
    𝓝[(f.extend I).target] f.extend I y = 𝓝[range I] f.extend I y :=
  (nhdsWithin_mono _ (extend_target_subset_range _)).antisymm <|
    nhdsWithin_le_of_mem (extend_target_mem_nhdsWithin _ hy)
Equality of Neighborhood Filters for Extended Chart Target and Model Range
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ with model embedding $I : H \to E$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$, the neighborhood filter of $(f.\text{extend}\, I)(y)$ within the target of the extended chart $f.\text{extend}\, I$ is equal to the neighborhood filter of $(f.\text{extend}\, I)(y)$ within the range of $I$. In other words: $$\mathcal{N}_{(f.\text{extend}\, I).\text{target}}((f.\text{extend}\, I)(y)) = \mathcal{N}_{\text{range}(I)}((f.\text{extend}\, I)(y)).$$
PartialHomeomorph.extend_target_eventuallyEq theorem
{y : M} (hy : y ∈ f.source) : (f.extend I).target =ᶠ[𝓝 (f.extend I y)] range I
Full source
theorem extend_target_eventuallyEq {y : M} (hy : y ∈ f.source) :
    (f.extend I).target =ᶠ[𝓝 (f.extend I y)] range I :=
  nhdsWithin_eq_iff_eventuallyEq.1 (nhdsWithin_extend_target_eq _ hy)
Eventual Equality of Extended Chart Target and Model Range
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ with model embedding $I : H \to E$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$, the target of the extended chart $f.\text{extend}\, I$ is eventually equal to the range of $I$ in the neighborhood filter of $(f.\text{extend}\, I)(y)$. In other words: $$(f.\text{extend}\, I).\text{target} =_{\mathcal{N}((f.\text{extend}\, I)(y))} \text{range}(I).$$
PartialHomeomorph.continuousAt_extend_symm' theorem
{x : E} (h : x ∈ (f.extend I).target) : ContinuousAt (f.extend I).symm x
Full source
theorem continuousAt_extend_symm' {x : E} (h : x ∈ (f.extend I).target) :
    ContinuousAt (f.extend I).symm x :=
  (f.continuousAt_symm h.2).comp I.continuous_symm.continuousAt
Continuity of the Inverse Extended Chart at Points in Its Target
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $f$ be a partial homeomorphism (chart) on $M$. For any point $x$ in the target of the extended chart $f.\text{extend}\, I$ (which is a partial equivalence from $M$ to $E$), the inverse map $(f.\text{extend}\, I)^{-1}$ is continuous at $x$.
PartialHomeomorph.continuousAt_extend_symm theorem
{x : M} (h : x ∈ f.source) : ContinuousAt (f.extend I).symm (f.extend I x)
Full source
theorem continuousAt_extend_symm {x : M} (h : x ∈ f.source) :
    ContinuousAt (f.extend I).symm (f.extend I x) :=
  continuousAt_extend_symm' f <| (f.extend I).map_source <| by rwa [f.extend_source]
Continuity of Inverse Extended Chart at Image Points
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any point $x$ in the source of $f$, the inverse of the extended chart $(f.\text{extend}\, I)^{-1}$ is continuous at the image point $(f.\text{extend}\, I)(x) \in E$.
PartialHomeomorph.continuousOn_extend_symm theorem
: ContinuousOn (f.extend I).symm (f.extend I).target
Full source
theorem continuousOn_extend_symm : ContinuousOn (f.extend I).symm (f.extend I).target := fun _ h =>
  (continuousAt_extend_symm' _ h).continuousWithinAt
Continuity of the Inverse Extended Chart on Its Target
Informal description
For any partial homeomorphism $f$ on a manifold with corners modeled on $(E, H)$, the inverse of the extended chart $(f.\text{extend}\, I)^{-1}$ is continuous on its target set, which is the image of $f.\text{extend}\, I$ in $E$.
PartialHomeomorph.extend_symm_continuousWithinAt_comp_right_iff theorem
{X} [TopologicalSpace X] {g : M → X} {s : Set M} {x : M} : ContinuousWithinAt (g ∘ (f.extend I).symm) ((f.extend I).symm ⁻¹' s ∩ range I) (f.extend I x) ↔ ContinuousWithinAt (g ∘ f.symm) (f.symm ⁻¹' s) (f x)
Full source
theorem extend_symm_continuousWithinAt_comp_right_iff {X} [TopologicalSpace X] {g : M → X}
    {s : Set M} {x : M} :
    ContinuousWithinAtContinuousWithinAt (g ∘ (f.extend I).symm) ((f.extend I).symm ⁻¹' s ∩ range I) (f.extend I x) ↔
      ContinuousWithinAt (g ∘ f.symm) (f.symm ⁻¹' s) (f x) := by
  rw [← I.symm_continuousWithinAt_comp_right_iff]; rfl
Equivalence of Continuity for Composition with Extended Chart Inverse
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any topological space $X$, function $g \colon M \to X$, subset $s \subseteq M$, and point $x \in M$, the composition $g \circ (f.\text{extend}\, I)^{-1}$ is continuous within $(f.\text{extend}\, I)^{-1}(s) \cap \text{range}(I)$ at $(f.\text{extend}\, I)(x)$ if and only if the composition $g \circ f^{-1}$ is continuous within $f^{-1}(s)$ at $f(x)$.
PartialHomeomorph.isOpen_extend_preimage' theorem
{s : Set E} (hs : IsOpen s) : IsOpen ((f.extend I).source ∩ f.extend I ⁻¹' s)
Full source
theorem isOpen_extend_preimage' {s : Set E} (hs : IsOpen s) :
    IsOpen ((f.extend I).source ∩ f.extend I ⁻¹' s) :=
  (continuousOn_extend f).isOpen_inter_preimage (isOpen_extend_source _) hs
Openness of Preimage under Extended Chart
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any open subset $s \subseteq E$, the intersection of the source of the extended chart $f.\text{extend}\, I$ with the preimage of $s$ under $f.\text{extend}\, I$ is an open subset of $M$. In other words, if $s$ is open in $E$, then $(f.\text{extend}\, I)^{-1}(s) \cap \text{dom}(f.\text{extend}\, I)$ is open in $M$.
PartialHomeomorph.isOpen_extend_preimage theorem
{s : Set E} (hs : IsOpen s) : IsOpen (f.source ∩ f.extend I ⁻¹' s)
Full source
theorem isOpen_extend_preimage {s : Set E} (hs : IsOpen s) :
    IsOpen (f.source ∩ f.extend I ⁻¹' s) := by
  rw [← extend_source f (I := I)]; exact isOpen_extend_preimage' f hs
Openness of Preimage under Extended Chart Restricted to Source
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any open subset $s \subseteq E$, the intersection of the source of $f$ with the preimage of $s$ under the extended chart $f.\text{extend}\, I$ is an open subset of $M$. In other words, if $s$ is open in $E$, then $f^{-1}(s) \cap \text{dom}(f)$ is open in $M$.
PartialHomeomorph.map_extend_nhdsWithin_eq_image theorem
{y : M} (hy : y ∈ f.source) : map (f.extend I) (𝓝[s] y) = 𝓝[f.extend I '' ((f.extend I).source ∩ s)] f.extend I y
Full source
theorem map_extend_nhdsWithin_eq_image {y : M} (hy : y ∈ f.source) :
    map (f.extend I) (𝓝[s] y) = 𝓝[f.extend I '' ((f.extend I).source ∩ s)] f.extend I y := by
  set e := f.extend I
  calc
    map e (𝓝[s] y) = map e (𝓝[e.source ∩ s] y) :=
      congr_arg (map e) (nhdsWithin_inter_of_mem (extend_source_mem_nhdsWithin f hy)).symm
    _ = 𝓝[e '' (e.source ∩ s)] e y :=
      ((f.extend I).leftInvOn.mono inter_subset_left).map_nhdsWithin_eq
        ((f.extend I).left_inv <| by rwa [f.extend_source])
        (continuousAt_extend_symm f hy).continuousWithinAt
        (continuousAt_extend f hy).continuousWithinAt
Equality of Neighborhood Filters under Extended Chart Mapping
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$ and any subset $s \subseteq M$, the image under the extended chart $f.\text{extend}\, I$ of the neighborhood filter of $y$ within $s$ equals the neighborhood filter of $f.\text{extend}\, I(y)$ within the image of the intersection of the source of $f.\text{extend}\, I$ with $s$. In other words, for $y \in f.\text{source}$, we have: $$(f.\text{extend}\, I)_*(\mathcal{N}_s(y)) = \mathcal{N}_{(f.\text{extend}\, I)(\text{source}(f.\text{extend}\, I) \cap s)}(f.\text{extend}\, I(y))$$
PartialHomeomorph.map_extend_nhdsWithin_eq_image_of_subset theorem
{y : M} (hy : y ∈ f.source) (hs : s ⊆ f.source) : map (f.extend I) (𝓝[s] y) = 𝓝[f.extend I '' s] f.extend I y
Full source
theorem map_extend_nhdsWithin_eq_image_of_subset {y : M} (hy : y ∈ f.source) (hs : s ⊆ f.source) :
    map (f.extend I) (𝓝[s] y) = 𝓝[f.extend I '' s] f.extend I y := by
  rw [map_extend_nhdsWithin_eq_image _ hy, inter_eq_self_of_subset_right]
  rwa [extend_source]
Equality of Neighborhood Filters under Extended Chart Mapping for Subsets of Chart Domain
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$ and any subset $s \subseteq f.\text{source}$, the image under the extended chart $f.\text{extend}\, I$ of the neighborhood filter of $y$ within $s$ equals the neighborhood filter of $f.\text{extend}\, I(y)$ within the image of $s$ under $f.\text{extend}\, I$. In other words, for $y \in f.\text{source}$ and $s \subseteq f.\text{source}$, we have: $$(f.\text{extend}\, I)_*(\mathcal{N}_s(y)) = \mathcal{N}_{(f.\text{extend}\, I)(s)}(f.\text{extend}\, I(y))$$
PartialHomeomorph.map_extend_nhdsWithin theorem
{y : M} (hy : y ∈ f.source) : map (f.extend I) (𝓝[s] y) = 𝓝[(f.extend I).symm ⁻¹' s ∩ range I] f.extend I y
Full source
theorem map_extend_nhdsWithin {y : M} (hy : y ∈ f.source) :
    map (f.extend I) (𝓝[s] y) = 𝓝[(f.extend I).symm ⁻¹' s ∩ range I] f.extend I y := by
  rw [map_extend_nhdsWithin_eq_image f hy, nhdsWithin_inter, ←
    nhdsWithin_extend_target_eq _ hy, ← nhdsWithin_inter, (f.extend I).image_source_inter_eq',
    inter_comm]
Equality of Neighborhood Filters under Extended Chart Mapping with Preimage Condition
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$ and any subset $s \subseteq M$, the image under the extended chart $f.\text{extend}\, I$ of the neighborhood filter of $y$ within $s$ equals the neighborhood filter of $f.\text{extend}\, I(y)$ within the intersection of the preimage of $s$ under the inverse of $f.\text{extend}\, I$ and the range of $I$. In other words, for $y \in f.\text{source}$, we have: $$(f.\text{extend}\, I)_*(\mathcal{N}_s(y)) = \mathcal{N}_{(f.\text{extend}\, I)^{-1}(s) \cap \text{range}(I)}(f.\text{extend}\, I(y))$$
PartialHomeomorph.map_extend_symm_nhdsWithin theorem
{y : M} (hy : y ∈ f.source) : map (f.extend I).symm (𝓝[(f.extend I).symm ⁻¹' s ∩ range I] f.extend I y) = 𝓝[s] y
Full source
theorem map_extend_symm_nhdsWithin {y : M} (hy : y ∈ f.source) :
    map (f.extend I).symm (𝓝[(f.extend I).symm ⁻¹' s ∩ range I] f.extend I y) = 𝓝[s] y := by
  rw [← map_extend_nhdsWithin f hy, map_map, Filter.map_congr, map_id]
  exact (f.extend I).leftInvOn.eqOn.eventuallyEq_of_mem (extend_source_mem_nhdsWithin _ hy)
Inverse Extended Chart Preserves Neighborhood Filters with Preimage Condition
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$ and any subset $s \subseteq M$, the image under the inverse of the extended chart $(f.\text{extend}\, I)^{-1}$ of the neighborhood filter of $f.\text{extend}\, I(y)$ within $(f.\text{extend}\, I)^{-1}(s) \cap \text{range}(I)$ equals the neighborhood filter of $y$ within $s$. In other words, for $y \in f.\text{source}$, we have: $$(f.\text{extend}\, I)^{-1}_*(\mathcal{N}_{(f.\text{extend}\, I)^{-1}(s) \cap \text{range}(I)}(f.\text{extend}\, I(y))) = \mathcal{N}_s(y)$$
PartialHomeomorph.map_extend_symm_nhdsWithin_range theorem
{y : M} (hy : y ∈ f.source) : map (f.extend I).symm (𝓝[range I] f.extend I y) = 𝓝 y
Full source
theorem map_extend_symm_nhdsWithin_range {y : M} (hy : y ∈ f.source) :
    map (f.extend I).symm (𝓝[range I] f.extend I y) = 𝓝 y := by
  rw [← nhdsWithin_univ, ← map_extend_symm_nhdsWithin f (I := I) hy, preimage_univ, univ_inter]
Inverse Extended Chart Preserves Neighborhood Filters within Range
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any point $y$ in the source of $f$, the image under the inverse of the extended chart $(f.\text{extend}\, I)^{-1}$ of the neighborhood filter of $f.\text{extend}\, I(y)$ within the range of $I$ equals the neighborhood filter of $y$. In other words, for $y \in f.\text{source}$, we have: $$(f.\text{extend}\, I)^{-1}_*(\mathcal{N}_{\text{range}(I)}(f.\text{extend}\, I(y))) = \mathcal{N}(y)$$
PartialHomeomorph.tendsto_extend_comp_iff theorem
{α : Type*} {l : Filter α} {g : α → M} (hg : ∀ᶠ z in l, g z ∈ f.source) {y : M} (hy : y ∈ f.source) : Tendsto (f.extend I ∘ g) l (𝓝 (f.extend I y)) ↔ Tendsto g l (𝓝 y)
Full source
theorem tendsto_extend_comp_iff {α : Type*} {l : Filter α} {g : α → M}
    (hg : ∀ᶠ z in l, g z ∈ f.source) {y : M} (hy : y ∈ f.source) :
    TendstoTendsto (f.extend I ∘ g) l (𝓝 (f.extend I y)) ↔ Tendsto g l (𝓝 y) := by
  refine ⟨fun h u hu ↦ mem_map.2 ?_, (continuousAt_extend _ hy).tendsto.comp⟩
  have := (f.continuousAt_extend_symm hy).tendsto.comp h
  rw [extend_left_inv _ hy] at this
  filter_upwards [hg, mem_map.1 (this hu)] with z hz hzu
  simpa only [(· ∘ ·), extend_left_inv _ hz, mem_preimage] using hzu
Limit Equivalence for Extended Chart Compositions
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any filter $l$ on a type $\alpha$, any function $g \colon \alpha \to M$ such that $g(z)$ is eventually in the source of $f$ for $z$ in $l$, and any point $y$ in the source of $f$, the following equivalence holds: The composition $f.\text{extend}\, I \circ g$ tends to $f.\text{extend}\, I(y)$ along $l$ if and only if $g$ tends to $y$ along $l$.
PartialHomeomorph.continuousWithinAt_writtenInExtend_iff theorem
{f' : PartialHomeomorph M' H'} {g : M → M'} {y : M} (hy : y ∈ f.source) (hgy : g y ∈ f'.source) (hmaps : MapsTo g s f'.source) : ContinuousWithinAt (f'.extend I' ∘ g ∘ (f.extend I).symm) ((f.extend I).symm ⁻¹' s ∩ range I) (f.extend I y) ↔ ContinuousWithinAt g s y
Full source
theorem continuousWithinAt_writtenInExtend_iff {f' : PartialHomeomorph M' H'} {g : M → M'} {y : M}
    (hy : y ∈ f.source) (hgy : g y ∈ f'.source) (hmaps : MapsTo g s f'.source) :
    ContinuousWithinAtContinuousWithinAt (f'.extend I' ∘ g ∘ (f.extend I).symm)
      ((f.extend I).symm ⁻¹' s ∩ range I) (f.extend I y) ↔ ContinuousWithinAt g s y := by
  unfold ContinuousWithinAt
  simp only [comp_apply]
  rw [extend_left_inv _ hy, f'.tendsto_extend_comp_iff _ hgy,
    ← f.map_extend_symm_nhdsWithin (I := I) hy, tendsto_map'_iff]
  rw [← f.map_extend_nhdsWithin (I := I) hy, eventually_map]
  filter_upwards [inter_mem_nhdsWithin _ (f.open_source.mem_nhds hy)] with z hz
  rw [comp_apply, extend_left_inv _ hz.2]
  exact hmaps hz.1
Equivalence of Continuity Conditions for Manifold Maps via Extended Charts
Informal description
Let $M$ and $M'$ be manifolds with corners modeled on $(E,H)$ and $(E',H')$ via models with corners $I$ and $I'$ respectively. Let $f$ and $f'$ be charts on $M$ and $M'$ respectively, and let $g : M \to M'$ be a map between the manifolds. For a point $y \in f.\text{source}$ such that $g(y) \in f'.\text{source}$, and assuming $g$ maps $s$ into $f'.\text{source}$, the following equivalence holds: The composition $f'.\text{extend}\, I' \circ g \circ (f.\text{extend}\, I)^{-1}$ is continuous at $(f.\text{extend}\, I)(y)$ within $(f.\text{extend}\, I)^{-1}(s) \cap \text{range}(I)$ if and only if $g$ is continuous at $y$ within $s$.
PartialHomeomorph.continuousOn_writtenInExtend_iff theorem
{f' : PartialHomeomorph M' H'} {g : M → M'} (hs : s ⊆ f.source) (hmaps : MapsTo g s f'.source) : ContinuousOn (f'.extend I' ∘ g ∘ (f.extend I).symm) (f.extend I '' s) ↔ ContinuousOn g s
Full source
/-- If `s ⊆ f.source` and `g x ∈ f'.source` whenever `x ∈ s`, then `g` is continuous on `s` if and
only if `g` written in charts `f.extend I` and `f'.extend I'` is continuous on `f.extend I '' s`. -/
theorem continuousOn_writtenInExtend_iff {f' : PartialHomeomorph M' H'} {g : M → M'}
    (hs : s ⊆ f.source) (hmaps : MapsTo g s f'.source) :
    ContinuousOnContinuousOn (f'.extend I' ∘ g ∘ (f.extend I).symm) (f.extend I '' s) ↔ ContinuousOn g s := by
  refine forall_mem_image.trans <| forall₂_congr fun x hx ↦ ?_
  refine (continuousWithinAt_congr_set ?_).trans
    (continuousWithinAt_writtenInExtend_iff _ (hs hx) (hmaps hx) hmaps)
  rw [← nhdsWithin_eq_iff_eventuallyEq, ← map_extend_nhdsWithin_eq_image_of_subset,
    ← map_extend_nhdsWithin]
  exacts [hs hx, hs hx, hs]
Equivalence of Continuity for Manifold Maps via Extended Charts on Subsets
Informal description
Let $M$ and $M'$ be smooth manifolds with corners modeled on $(E,H)$ and $(E',H')$ via models with corners $I$ and $I'$ respectively. Let $f$ and $f'$ be charts on $M$ and $M'$, and let $g : M \to M'$ be a map between the manifolds. For a subset $s \subseteq f.\text{source}$ such that $g$ maps $s$ into $f'.\text{source}$, the following equivalence holds: The composition $f'.\text{extend}\, I' \circ g \circ (f.\text{extend}\, I)^{-1}$ is continuous on the image $f.\text{extend}\, I(s)$ if and only if $g$ is continuous on $s$.
PartialHomeomorph.extend_preimage_mem_nhdsWithin theorem
{x : M} (h : x ∈ f.source) (ht : t ∈ 𝓝[s] x) : (f.extend I).symm ⁻¹' t ∈ 𝓝[(f.extend I).symm ⁻¹' s ∩ range I] f.extend I x
Full source
/-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point
in the source is a neighborhood of the preimage, within a set. -/
theorem extend_preimage_mem_nhdsWithin {x : M} (h : x ∈ f.source) (ht : t ∈ 𝓝[s] x) :
    (f.extend I).symm ⁻¹' t(f.extend I).symm ⁻¹' t ∈ 𝓝[(f.extend I).symm ⁻¹' s ∩ range I] f.extend I x := by
  rwa [← map_extend_symm_nhdsWithin f (I := I) h, mem_map] at ht
Neighborhood Preservation under Extended Chart Inverse within a Set
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$, and let $f$ be a chart on $M$. For any point $x$ in the source of $f$ and any neighborhood $t$ of $x$ within a subset $s \subseteq M$, the preimage of $t$ under the inverse of the extended chart $(f \circ I)^{-1}$ is a neighborhood of $(f \circ I)(x)$ within $(f \circ I)^{-1}(s) \cap \text{range}(I)$. In other words, for $x \in f.\text{source}$ and $t \in \mathcal{N}_s(x)$, we have: $$(f \circ I)^{-1}(t) \in \mathcal{N}_{(f \circ I)^{-1}(s) \cap \text{range}(I)}((f \circ I)(x))$$
PartialHomeomorph.extend_preimage_mem_nhds theorem
{x : M} (h : x ∈ f.source) (ht : t ∈ 𝓝 x) : (f.extend I).symm ⁻¹' t ∈ 𝓝 (f.extend I x)
Full source
theorem extend_preimage_mem_nhds {x : M} (h : x ∈ f.source) (ht : t ∈ 𝓝 x) :
    (f.extend I).symm ⁻¹' t(f.extend I).symm ⁻¹' t ∈ 𝓝 (f.extend I x) := by
  apply (continuousAt_extend_symm f h).preimage_mem_nhds
  rwa [(f.extend I).left_inv]
  rwa [f.extend_source]
Neighborhood Preservation under Extended Chart Inverse
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $f$ be a partial homeomorphism on $M$ with model embedding $I : H \to E$. For any point $x \in f.\text{source}$ and any neighborhood $t$ of $x$ in $M$, the preimage of $t$ under the inverse of the extended chart $(f.\text{extend}\, I)^{-1}$ is a neighborhood of $f.\text{extend}\, I(x)$ in $E$.
PartialHomeomorph.extend_preimage_inter_eq theorem
: (f.extend I).symm ⁻¹' (s ∩ t) ∩ range I = (f.extend I).symm ⁻¹' s ∩ range I ∩ (f.extend I).symm ⁻¹' t
Full source
/-- Technical lemma to rewrite suitably the preimage of an intersection under an extended chart, to
bring it into a convenient form to apply derivative lemmas. -/
theorem extend_preimage_inter_eq :
    (f.extend I).symm ⁻¹' (s ∩ t)(f.extend I).symm ⁻¹' (s ∩ t) ∩ range I =
      (f.extend I).symm ⁻¹' s(f.extend I).symm ⁻¹' s ∩ range I(f.extend I).symm ⁻¹' s ∩ range I ∩ (f.extend I).symm ⁻¹' t := by
  mfld_set_tac
Preimage of Intersection under Extended Chart Inverse
Informal description
Let $f$ be a partial homeomorphism on a manifold $M$ modeled on $(E, H)$, and let $I$ be a model with corners embedding $H$ into $E$. For any sets $s, t \subseteq M$, the preimage under the extended chart's inverse map satisfies: \[ (f.\text{extend}\, I)^{-1}(s \cap t) \cap \text{range}\, I = (f.\text{extend}\, I)^{-1}(s) \cap \text{range}\, I \cap (f.\text{extend}\, I)^{-1}(t). \]
PartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq_aux theorem
{s : Set M} {x : M} (hx : x ∈ f.source) : ((f.extend I).symm ⁻¹' s ∩ range I : Set _) =ᶠ[𝓝 (f.extend I x)] ((f.extend I).target ∩ (f.extend I).symm ⁻¹' s : Set _)
Full source
theorem extend_symm_preimage_inter_range_eventuallyEq_aux {s : Set M} {x : M} (hx : x ∈ f.source) :
    ((f.extend I).symm ⁻¹' s ∩ range I : Set _) =ᶠ[𝓝 (f.extend I x)]
      ((f.extend I).target ∩ (f.extend I).symm ⁻¹' s : Set _) := by
  rw [f.extend_target, inter_assoc, inter_comm (range I)]
  conv =>
    congr
    · skip
    rw [← univ_inter (_ ∩ range I)]
  refine (eventuallyEq_univ.mpr ?_).symm.inter EventuallyEq.rfl
  refine I.continuousAt_symm.preimage_mem_nhds (f.open_target.mem_nhds ?_)
  simp_rw [f.extend_coe, Function.comp_apply, I.left_inv, f.mapsTo hx]
Local Equality of Extended Chart Preimage and Target Intersection in Neighborhood Filter
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $f$ be a partial homeomorphism on $M$ with model embedding $I : H \to E$. For any set $s \subseteq M$ and any point $x \in f.\text{source}$, the following equality holds in the neighborhood filter of $f.\text{extend}\, I(x)$: \[ (f.\text{extend}\, I)^{-1}(s) \cap \text{range}\, I =_{\mathcal{N}(f.\text{extend}\, I(x))} (f.\text{extend}\, I).\text{target} \cap (f.\text{extend}\, I)^{-1}(s). \] Here, $=_{\mathcal{N}(a)}$ denotes equality in the neighborhood filter of $a$.
PartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq theorem
{s : Set M} {x : M} (hs : s ⊆ f.source) (hx : x ∈ f.source) : ((f.extend I).symm ⁻¹' s ∩ range I : Set _) =ᶠ[𝓝 (f.extend I x)] f.extend I '' s
Full source
theorem extend_symm_preimage_inter_range_eventuallyEq {s : Set M} {x : M} (hs : s ⊆ f.source)
    (hx : x ∈ f.source) :
    ((f.extend I).symm ⁻¹' s ∩ range I : Set _) =ᶠ[𝓝 (f.extend I x)] f.extend I '' s := by
  rw [← nhdsWithin_eq_iff_eventuallyEq, ← map_extend_nhdsWithin _ hx,
    map_extend_nhdsWithin_eq_image_of_subset _ hx hs]
Local Equality of Extended Chart Preimage and Image in Neighborhood Filter
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I : H \to E$, and let $f$ be a chart on $M$. For any subset $s \subseteq f.\text{source}$ and any point $x \in f.\text{source}$, the intersection of the preimage of $s$ under the inverse of the extended chart $f.\text{extend}\, I$ with the range of $I$ is eventually equal to the image of $s$ under $f.\text{extend}\, I$ in the neighborhood filter of $f.\text{extend}\, I(x)$. In other words, for $s \subseteq f.\text{source}$ and $x \in f.\text{source}$, we have: $$(f.\text{extend}\, I)^{-1}(s) \cap \text{range}\, I =_{\mathcal{N}(f.\text{extend}\, I(x))} (f.\text{extend}\, I)(s)$$
PartialHomeomorph.extend_coord_change_source theorem
: ((f.extend I).symm ≫ f'.extend I).source = I '' (f.symm ≫ₕ f').source
Full source
theorem extend_coord_change_source :
    ((f.extend I).symm ≫ f'.extend I).source = I '' (f.symm ≫ₕ f').source := by
  simp_rw [PartialEquiv.trans_source, I.image_eq, extend_source, PartialEquiv.symm_source,
    extend_target, inter_right_comm _ (range I)]
  rfl
Source of Extended Coordinate Change Equals Image of Original Coordinate Change Source
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $I : H \to E$ be the model embedding. For any two charts $f$ and $f'$ in the maximal atlas of $M$, the source of the extended coordinate change $(f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I$ equals the image under $I$ of the source of the coordinate change $f^{-1} \circ f'$ between the original charts. In symbols: $$\text{source}\left((f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I\right) = I\left(\text{source}(f^{-1} \circ f')\right)$$
PartialHomeomorph.extend_image_source_inter theorem
: f.extend I '' (f.source ∩ f'.source) = ((f.extend I).symm ≫ f'.extend I).source
Full source
theorem extend_image_source_inter :
    f.extend I '' (f.source ∩ f'.source) = ((f.extend I).symm ≫ f'.extend I).source := by
  simp_rw [f.extend_coord_change_source, f.extend_coe, image_comp I f, trans_source'', symm_symm,
    symm_target]
Image of Source Intersection under Extended Chart Equals Source of Extended Coordinate Change
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $I : H \to E$ be the model embedding. For any two charts $f$ and $f'$ in the maximal atlas of $M$, the image under the extended chart $f.\text{extend}\, I$ of the intersection of their source sets equals the source of the extended coordinate change $(f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I$. In symbols: $$(f.\text{extend}\, I)(f.\text{source} \cap f'.\text{source}) = \text{source}\left((f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I\right)$$
PartialHomeomorph.extend_coord_change_source_mem_nhdsWithin theorem
{x : E} (hx : x ∈ ((f.extend I).symm ≫ f'.extend I).source) : ((f.extend I).symm ≫ f'.extend I).source ∈ 𝓝[range I] x
Full source
theorem extend_coord_change_source_mem_nhdsWithin {x : E}
    (hx : x ∈ ((f.extend I).symm ≫ f'.extend I).source) :
    ((f.extend I).symm ≫ f'.extend I).source ∈ 𝓝[range I] x := by
  rw [f.extend_coord_change_source] at hx ⊢
  obtain ⟨x, hx, rfl⟩ := hx
  refine I.image_mem_nhdsWithin ?_
  exact (PartialHomeomorph.open_source _).mem_nhds hx
Extended Coordinate Change Source is a Neighborhood within the Model Embedding Range
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $I : H \to E$ be the model embedding. For any two charts $f$ and $f'$ in the maximal atlas of $M$, if $x$ belongs to the source of the extended coordinate change $(f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I$, then this source is a neighborhood of $x$ within the range of $I$ in $E$. In symbols, for any $x \in E$ such that $x \in \text{source}\left((f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I\right)$, we have: $$\text{source}\left((f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I\right) \in \mathcal{N}_{\text{range}(I)}(x)$$
PartialHomeomorph.extend_coord_change_source_mem_nhdsWithin' theorem
{x : M} (hxf : x ∈ f.source) (hxf' : x ∈ f'.source) : ((f.extend I).symm ≫ f'.extend I).source ∈ 𝓝[range I] f.extend I x
Full source
theorem extend_coord_change_source_mem_nhdsWithin' {x : M} (hxf : x ∈ f.source)
    (hxf' : x ∈ f'.source) :
    ((f.extend I).symm ≫ f'.extend I).source ∈ 𝓝[range I] f.extend I x := by
  apply extend_coord_change_source_mem_nhdsWithin
  rw [← extend_image_source_inter]
  exact mem_image_of_mem _ ⟨hxf, hxf'⟩
Neighborhood Property of Extended Coordinate Change Source for Points in Chart Domains
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $I : H \to E$ be the model embedding. For any two charts $f$ and $f'$ in the maximal atlas of $M$ and any point $x \in M$ that lies in both $f.\text{source}$ and $f'.\text{source}$, the source of the extended coordinate change $(f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I$ is a neighborhood of $f.\text{extend}\, I(x)$ within the range of $I$ in $E$. In symbols, for any $x \in M$ with $x \in f.\text{source}$ and $x \in f'.\text{source}$, we have: $$\text{source}\left((f.\text{extend}\, I)^{-1} \circ f'.\text{extend}\, I\right) \in \mathcal{N}_{\text{range}(I)}(f.\text{extend}\, I(x))$$
PartialHomeomorph.contDiffOn_extend_coord_change theorem
[ChartedSpace H M] (hf : f ∈ maximalAtlas I n M) (hf' : f' ∈ maximalAtlas I n M) : ContDiffOn 𝕜 n (f.extend I ∘ (f'.extend I).symm) ((f'.extend I).symm ≫ f.extend I).source
Full source
theorem contDiffOn_extend_coord_change [ChartedSpace H M] (hf : f ∈ maximalAtlas I n M)
    (hf' : f' ∈ maximalAtlas I n M) :
    ContDiffOn 𝕜 n (f.extend I ∘ (f'.extend I).symm) ((f'.extend I).symm ≫ f.extend I).source := by
  rw [extend_coord_change_source, I.image_eq]
  exact (StructureGroupoid.compatible_of_mem_maximalAtlas hf' hf).1
$C^n$ Differentiability of Extended Coordinate Changes on Manifolds with Corners
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $I : H \to E$ be the model embedding. For any two charts $f$ and $f'$ in the maximal atlas of $M$, the composition $f \circ I^{-1} \circ I \circ f'^{-1}$ is $C^n$ on its domain of definition. More precisely, the map $f \circ I^{-1} \circ I \circ f'^{-1}$ is $C^n$ on the set $(f' \circ I^{-1} \circ I \circ f^{-1})^{-1}(\text{domain of } f \circ I^{-1} \circ I \circ f'^{-1})$.
PartialHomeomorph.contDiffWithinAt_extend_coord_change theorem
[ChartedSpace H M] (hf : f ∈ maximalAtlas I n M) (hf' : f' ∈ maximalAtlas I n M) {x : E} (hx : x ∈ ((f'.extend I).symm ≫ f.extend I).source) : ContDiffWithinAt 𝕜 n (f.extend I ∘ (f'.extend I).symm) (range I) x
Full source
theorem contDiffWithinAt_extend_coord_change [ChartedSpace H M] (hf : f ∈ maximalAtlas I n M)
    (hf' : f' ∈ maximalAtlas I n M) {x : E} (hx : x ∈ ((f'.extend I).symm ≫ f.extend I).source) :
    ContDiffWithinAt 𝕜 n (f.extend I ∘ (f'.extend I).symm) (range I) x := by
  apply (contDiffOn_extend_coord_change hf hf' x hx).mono_of_mem_nhdsWithin
  rw [extend_coord_change_source] at hx ⊢
  obtain ⟨z, hz, rfl⟩ := hx
  exact I.image_mem_nhdsWithin ((PartialHomeomorph.open_source _).mem_nhds hz)
$C^n$ Differentiability of Extended Coordinate Changes at a Point in Manifolds with Corners
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $I : H \to E$ be the model embedding. For any two charts $f$ and $f'$ in the maximal atlas of $M$, and any point $x \in E$ in the domain of the extended coordinate change $(f'.\text{extend}\, I)^{-1} \circ f.\text{extend}\, I$, the composition $f \circ I^{-1} \circ I \circ f'^{-1}$ is $C^n$ at $x$ within the range of $I$.
PartialHomeomorph.contDiffWithinAt_extend_coord_change' theorem
[ChartedSpace H M] (hf : f ∈ maximalAtlas I n M) (hf' : f' ∈ maximalAtlas I n M) {x : M} (hxf : x ∈ f.source) (hxf' : x ∈ f'.source) : ContDiffWithinAt 𝕜 n (f.extend I ∘ (f'.extend I).symm) (range I) (f'.extend I x)
Full source
theorem contDiffWithinAt_extend_coord_change' [ChartedSpace H M] (hf : f ∈ maximalAtlas I n M)
    (hf' : f' ∈ maximalAtlas I n M) {x : M} (hxf : x ∈ f.source) (hxf' : x ∈ f'.source) :
    ContDiffWithinAt 𝕜 n (f.extend I ∘ (f'.extend I).symm) (range I) (f'.extend I x) := by
  refine contDiffWithinAt_extend_coord_change hf hf' ?_
  rw [← extend_image_source_inter]
  exact mem_image_of_mem _ ⟨hxf', hxf⟩
$C^n$ Differentiability of Extended Coordinate Changes at a Point in Manifolds with Corners (Point Version)
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$, and let $I : H \to E$ be the model embedding. For any two charts $f$ and $f'$ in the maximal atlas of $M$, and any point $x \in M$ that lies in both the source of $f$ and $f'$, the composition $f \circ I^{-1} \circ I \circ f'^{-1}$ is $C^n$ at the point $f'(x) \in E$ within the range of $I$.
extChartAt definition
(x : M) : PartialEquiv M E
Full source
/-- The preferred extended chart on a manifold with corners around a point `x`, from a neighborhood
of `x` to the model vector space. -/
@[simp, mfld_simps]
def extChartAt (x : M) : PartialEquiv M E :=
  (chartAt H x).extend I
Extended chart at a point in a manifold with corners
Informal description
The extended chart at a point \( x \) in a manifold \( M \) modeled on \( (E, H) \) is a partial equivalence between \( M \) and the model vector space \( E \), obtained by composing the chart at \( x \) with the model embedding \( I : H \to E \). More precisely, for \( x \in M \), the extended chart \( \text{extChartAt}_I(x) \) is defined as the composition of the chart \( \text{chartAt}_H(x) \) (a local homeomorphism from a neighborhood of \( x \) in \( M \) to \( H \)) with the model embedding \( I \). This yields a partial equivalence whose source is the domain of \( \text{chartAt}_H(x) \) and whose target is the image of \( I \circ \text{chartAt}_H(x) \) in \( E \). The inverse of this partial equivalence is given by \( \text{chartAt}_H(x)^{-1} \circ I^{-1} \).
extChartAt_coe theorem
(x : M) : ⇑(extChartAt I x) = I ∘ chartAt H x
Full source
theorem extChartAt_coe (x : M) : ⇑(extChartAt I x) = I ∘ chartAt H x :=
  rfl
Extended Chart as Composition of Model Embedding and Chart
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the extended chart map $\text{extChartAt}_I(x)$ is equal to the composition of the model embedding $I : H \to E$ with the chart map $\text{chartAt}_H(x)$ at $x$.
extChartAt_coe_symm theorem
(x : M) : ⇑(extChartAt I x).symm = (chartAt H x).symm ∘ I.symm
Full source
theorem extChartAt_coe_symm (x : M) : ⇑(extChartAt I x).symm = (chartAt H x).symm ∘ I.symm :=
  rfl
Inverse of Extended Chart as Composition of Inverses
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the inverse of the extended chart $\text{extChartAt}_I(x)^{-1}$ is equal to the composition of the inverse of the model embedding $I^{-1}$ with the inverse of the chart $\text{chartAt}_H(x)^{-1}$. In other words, the inverse function of the extended chart at $x$ is given by: $$ \text{extChartAt}_I(x)^{-1} = \text{chartAt}_H(x)^{-1} \circ I^{-1} $$
extChartAt_source theorem
(x : M) : (extChartAt I x).source = (chartAt H x).source
Full source
theorem extChartAt_source (x : M) : (extChartAt I x).source = (chartAt H x).source :=
  extend_source _
Source Equality for Extended Chart and Original Chart
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the source of the extended chart $\text{extChartAt}_I(x)$ equals the source of the chart $\text{chartAt}_H(x)$. That is, $$(\text{extChartAt}_I(x)).\text{source} = (\text{chartAt}_H(x)).\text{source}.$$
isOpen_extChartAt_source theorem
(x : M) : IsOpen (extChartAt I x).source
Full source
theorem isOpen_extChartAt_source (x : M) : IsOpen (extChartAt I x).source :=
  isOpen_extend_source _
Openness of the Extended Chart's Source Set
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the source of the extended chart $\text{extChartAt}_I(x)$ is an open subset of $M$.
mem_extChartAt_source theorem
(x : M) : x ∈ (extChartAt I x).source
Full source
theorem mem_extChartAt_source (x : M) : x ∈ (extChartAt I x).source := by
  simp only [extChartAt_source, mem_chart_source]
Point Belongs to Source of Its Extended Chart
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the point $x$ belongs to the source of its extended chart $\text{extChartAt}_I(x)$. That is, $x \in (\text{extChartAt}_I(x)).\text{source}$.
mem_extChartAt_target theorem
(x : M) : extChartAt I x x ∈ (extChartAt I x).target
Full source
theorem mem_extChartAt_target (x : M) : extChartAtextChartAt I x x ∈ (extChartAt I x).target :=
  (extChartAt I x).map_source <| mem_extChartAt_source _
Image of Point under Extended Chart Belongs to Target
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the image of $x$ under its extended chart $\text{extChartAt}_I(x)$ belongs to the target set of the extended chart, i.e., $\text{extChartAt}_I(x)(x) \in (\text{extChartAt}_I(x)).\text{target}$.
extChartAt_target theorem
(x : M) : (extChartAt I x).target = I.symm ⁻¹' (chartAt H x).target ∩ range I
Full source
theorem extChartAt_target (x : M) :
    (extChartAt I x).target = I.symm ⁻¹' (chartAt H x).targetI.symm ⁻¹' (chartAt H x).target ∩ range I :=
  extend_target _
Target of Extended Chart as Preimage Intersection
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the target of the extended chart $\text{extChartAt}_I(x)$ is equal to the intersection of the preimage of the target of the chart $\text{chartAt}_H(x)$ under the inverse model embedding $I^{-1}$ and the range of $I$. That is: $$(\text{extChartAt}_I(x)).\text{target} = I^{-1}\big((\text{chartAt}_H(x)).\text{target}\big) \cap \text{range}(I)$$
uniqueDiffOn_extChartAt_target theorem
(x : M) : UniqueDiffOn 𝕜 (extChartAt I x).target
Full source
theorem uniqueDiffOn_extChartAt_target (x : M) : UniqueDiffOn 𝕜 (extChartAt I x).target := by
  rw [extChartAt_target]
  exact I.uniqueDiffOn_preimage (chartAt H x).open_target
Uniqueness of Derivatives on the Target of Extended Charts
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners over a nontrivially normed field $\mathbb{K}$, the target of the extended chart $\text{extChartAt}_I(x)$ has unique derivatives everywhere. That is, the set $(\text{extChartAt}_I(x)).\text{target} \subseteq E$ satisfies the property that at each of its points, derivatives (if they exist) are uniquely determined.
uniqueDiffWithinAt_extChartAt_target theorem
(x : M) : UniqueDiffWithinAt 𝕜 (extChartAt I x).target (extChartAt I x x)
Full source
theorem uniqueDiffWithinAt_extChartAt_target (x : M) :
    UniqueDiffWithinAt 𝕜 (extChartAt I x).target (extChartAt I x x) :=
  uniqueDiffOn_extChartAt_target x _ <| mem_extChartAt_target x
Uniqueness of Derivatives at the Image Point in Extended Chart Target
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners over a nontrivially normed field $\mathbb{K}$, the target of the extended chart $\text{extChartAt}_I(x)$ has unique derivatives at the point $\text{extChartAt}_I(x)(x)$. That is, the set $(\text{extChartAt}_I(x)).\text{target} \subseteq E$ satisfies the property that derivatives (if they exist) are uniquely determined at $\text{extChartAt}_I(x)(x)$.
extChartAt_to_inv theorem
(x : M) : (extChartAt I x).symm ((extChartAt I x) x) = x
Full source
theorem extChartAt_to_inv (x : M) : (extChartAt I x).symm ((extChartAt I x) x) = x :=
  (extChartAt I x).left_inv (mem_extChartAt_source x)
Inverse Property of Extended Chart at a Point: $(\text{extChartAt}_I(x))^{-1} \circ \text{extChartAt}_I(x)(x) = x$
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, the composition of the extended chart $\text{extChartAt}_I(x)$ and its inverse maps $x$ back to itself. That is, $(\text{extChartAt}_I(x))^{-1}(\text{extChartAt}_I(x)(x)) = x$.
mapsTo_extChartAt theorem
{x : M} (hs : s ⊆ (chartAt H x).source) : MapsTo (extChartAt I x) s ((extChartAt I x).symm ⁻¹' s ∩ range I)
Full source
theorem mapsTo_extChartAt {x : M} (hs : s ⊆ (chartAt H x).source) :
    MapsTo (extChartAt I x) s ((extChartAt I x).symm ⁻¹' s(extChartAt I x).symm ⁻¹' s ∩ range I) :=
  mapsTo_extend _ hs
Mapping Property of Extended Charts: $\text{extChartAt}_I(x)$ Preserves Preimage-Range Intersection
Informal description
Let $M$ be a manifold modeled on $(E, H)$ with corners, and let $x \in M$. For any subset $s \subseteq M$ contained in the domain of the chart at $x$, the extended chart $\text{extChartAt}_I(x)$ maps $s$ into the intersection of the preimage of $s$ under its inverse and the range of the model embedding $I : H \to E$. In symbols, if $s \subseteq \text{chartAt}_H(x).\text{source}$, then: $$\text{extChartAt}_I(x)(s) \subseteq (\text{extChartAt}_I(x))^{-1}(s) \cap \text{range}(I).$$
extChartAt_source_mem_nhds' theorem
{x x' : M} (h : x' ∈ (extChartAt I x).source) : (extChartAt I x).source ∈ 𝓝 x'
Full source
theorem extChartAt_source_mem_nhds' {x x' : M} (h : x' ∈ (extChartAt I x).source) :
    (extChartAt I x).source ∈ 𝓝 x' :=
  extend_source_mem_nhds _ <| by rwa [← extChartAt_source I]
Neighborhood Property of Extended Chart Source at a Point in Its Domain
Informal description
For any points $x$ and $x'$ in a manifold $M$ modeled on $(E, H)$, if $x'$ belongs to the source of the extended chart $\text{extChartAt}_I(x)$, then the source of $\text{extChartAt}_I(x)$ is a neighborhood of $x'$ in $M$.
extChartAt_source_mem_nhdsWithin' theorem
{x x' : M} (h : x' ∈ (extChartAt I x).source) : (extChartAt I x).source ∈ 𝓝[s] x'
Full source
theorem extChartAt_source_mem_nhdsWithin' {x x' : M} (h : x' ∈ (extChartAt I x).source) :
    (extChartAt I x).source ∈ 𝓝[s] x' :=
  mem_nhdsWithin_of_mem_nhds (extChartAt_source_mem_nhds' h)
Neighborhood property of extended chart source within a subset
Informal description
For any points $x$ and $x'$ in a manifold $M$ modeled on $(E, H)$, if $x'$ belongs to the source of the extended chart $\text{extChartAt}_I(x)$, then the source of $\text{extChartAt}_I(x)$ is a neighborhood of $x'$ within any subset $s \subseteq M$.
extChartAt_source_mem_nhdsWithin theorem
(x : M) : (extChartAt I x).source ∈ 𝓝[s] x
Full source
theorem extChartAt_source_mem_nhdsWithin (x : M) : (extChartAt I x).source ∈ 𝓝[s] x :=
  mem_nhdsWithin_of_mem_nhds (extChartAt_source_mem_nhds x)
Neighborhood property of extended chart source within any subset
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ and any subset $s \subseteq M$, the source of the extended chart $\text{extChartAt}_I(x)$ is a neighborhood of $x$ within $s$.
continuousOn_extChartAt theorem
(x : M) : ContinuousOn (extChartAt I x) (extChartAt I x).source
Full source
theorem continuousOn_extChartAt (x : M) : ContinuousOn (extChartAt I x) (extChartAt I x).source :=
  continuousOn_extend _
Continuity of Extended Chart on Its Source Set
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the extended chart $\text{extChartAt}_I(x)$ is continuous on its source set, which consists of all points in $M$ where the chart is defined.
continuousAt_extChartAt' theorem
{x x' : M} (h : x' ∈ (extChartAt I x).source) : ContinuousAt (extChartAt I x) x'
Full source
theorem continuousAt_extChartAt' {x x' : M} (h : x' ∈ (extChartAt I x).source) :
    ContinuousAt (extChartAt I x) x' :=
  continuousAt_extend _ <| by rwa [← extChartAt_source I]
Continuity of Extended Chart at Points in its Source
Informal description
For any points $x$ and $x'$ in a manifold $M$ modeled on $(E, H)$, if $x'$ belongs to the source of the extended chart $\text{extChartAt}_I(x)$, then the extended chart $\text{extChartAt}_I(x)$ is continuous at $x'$. Here, $\text{extChartAt}_I(x)$ denotes the composition of the chart at $x$ with the model embedding $I \colon H \to E$, which maps points from the manifold to the model vector space $E$.
continuousAt_extChartAt theorem
(x : M) : ContinuousAt (extChartAt I x) x
Full source
theorem continuousAt_extChartAt (x : M) : ContinuousAt (extChartAt I x) x :=
  continuousAt_extChartAt' (mem_extChartAt_source x)
Continuity of Extended Chart at Base Point
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the extended chart $\text{extChartAt}_I(x)$ is continuous at $x$. Here, $\text{extChartAt}_I(x)$ denotes the composition of the chart at $x$ with the model embedding $I \colon H \to E$, which maps points from the manifold to the model vector space $E$.
map_extChartAt_nhds' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : map (extChartAt I x) (𝓝 y) = 𝓝[range I] extChartAt I x y
Full source
theorem map_extChartAt_nhds' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    map (extChartAt I x) (𝓝 y) = 𝓝[range I] extChartAt I x y :=
  map_extend_nhds _ <| by rwa [← extChartAt_source I]
Neighborhood Filter Preservation under Extended Chart at a Point
Informal description
For any points $x$ and $y$ in a manifold $M$ modeled on $(E, H)$, if $y$ belongs to the source of the extended chart $\text{extChartAt}_I(x)$, then the pushforward of the neighborhood filter $\mathcal{N}(y)$ under $\text{extChartAt}_I(x)$ equals the neighborhood filter of $\text{extChartAt}_I(x)(y)$ restricted to the range of the model embedding $I \colon H \to E$. In other words: $$ (\text{extChartAt}_I(x))_*(\mathcal{N}(y)) = \mathcal{N}_{\text{extChartAt}_I(x)(y)}|_{\text{range}(I)}. $$
map_extChartAt_nhds theorem
(x : M) : map (extChartAt I x) (𝓝 x) = 𝓝[range I] extChartAt I x x
Full source
theorem map_extChartAt_nhds (x : M) : map (extChartAt I x) (𝓝 x) = 𝓝[range I] extChartAt I x x :=
  map_extChartAt_nhds' <| mem_extChartAt_source x
Neighborhood Filter Preservation under Extended Chart at a Point
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the pushforward of the neighborhood filter $\mathcal{N}(x)$ under the extended chart $\text{extChartAt}_I(x)$ equals the neighborhood filter of $\text{extChartAt}_I(x)(x)$ restricted to the range of the model embedding $I \colon H \to E$. In other words: $$ (\text{extChartAt}_I(x))_*(\mathcal{N}(x)) = \mathcal{N}_{\text{extChartAt}_I(x)(x)}|_{\text{range}(I)}. $$
map_extChartAt_nhds_of_boundaryless theorem
[I.Boundaryless] (x : M) : map (extChartAt I x) (𝓝 x) = 𝓝 (extChartAt I x x)
Full source
theorem map_extChartAt_nhds_of_boundaryless [I.Boundaryless] (x : M) :
    map (extChartAt I x) (𝓝 x) = 𝓝 (extChartAt I x x) := by
  rw [extChartAt]
  exact map_extend_nhds_of_boundaryless (chartAt H x) (mem_chart_source H x)
Neighborhood Filter Preservation under Extended Chart for Boundaryless Models
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ with a boundaryless model $I : H \to E$. For any point $x \in M$, the pushforward of the neighborhood filter $\mathcal{N}(x)$ under the extended chart $\text{extChartAt}_I(x)$ equals the neighborhood filter of $\text{extChartAt}_I(x)(x)$ in $E$. In other words: $$ (\text{extChartAt}_I(x))_*(\mathcal{N}(x)) = \mathcal{N}(\text{extChartAt}_I(x)(x)). $$
extChartAt_image_nhd_mem_nhds_of_mem_interior_range theorem
{x y} (hx : y ∈ (extChartAt I x).source) (h'x : extChartAt I x y ∈ interior (range I)) {s : Set M} (h : s ∈ 𝓝 y) : (extChartAt I x) '' s ∈ 𝓝 (extChartAt I x y)
Full source
theorem extChartAt_image_nhd_mem_nhds_of_mem_interior_range {x y} (hx : y ∈ (extChartAt I x).source)
    (h'x : extChartAtextChartAt I x y ∈ interior (range I)) {s : Set M} (h : s ∈ 𝓝 y) :
    (extChartAt I x) '' s(extChartAt I x) '' s ∈ 𝓝 (extChartAt I x y) := by
  rw [extChartAt]
  exact extend_image_nhd_mem_nhds_of_mem_interior_range _ (by simpa using hx) h'x h
Neighborhood Preservation under Extended Chart for Interior Points
Informal description
Let \( M \) be a manifold with corners modeled on \( (E, H) \), and let \( I : H \to E \) be the model embedding. For any points \( x, y \in M \) such that \( y \) lies in the source of the extended chart \( \text{extChartAt}_I(x) \) and the image \( \text{extChartAt}_I(x)(y) \) lies in the interior of the range of \( I \), the following holds: for any neighborhood \( s \) of \( y \) in \( M \), the image of \( s \) under \( \text{extChartAt}_I(x) \) is a neighborhood of \( \text{extChartAt}_I(x)(y) \) in \( E \). In other words, if \( y \in \text{extChartAt}_I(x).\text{source} \) and \( \text{extChartAt}_I(x)(y) \in \text{interior}(\text{range}(I)) \), then for any \( s \in \mathcal{N}(y) \), we have: \[ \text{extChartAt}_I(x)(s) \in \mathcal{N}(\text{extChartAt}_I(x)(y)). \]
extChartAt_image_nhd_mem_nhds_of_boundaryless theorem
[I.Boundaryless] {x : M} (hx : s ∈ 𝓝 x) : extChartAt I x '' s ∈ 𝓝 (extChartAt I x x)
Full source
theorem extChartAt_image_nhd_mem_nhds_of_boundaryless [I.Boundaryless]
    {x : M} (hx : s ∈ 𝓝 x) : extChartAtextChartAt I x '' sextChartAt I x '' s ∈ 𝓝 (extChartAt I x x) := by
  rw [extChartAt]
  exact extend_image_nhd_mem_nhds_of_boundaryless _ (mem_chart_source H x) hx
Neighborhood Preservation under Extended Chart for Boundaryless Models
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$ with a boundaryless model $I : H \to E$. For any point $x \in M$ and any neighborhood $s$ of $x$ in $M$, the image of $s$ under the extended chart $\text{extChartAt}_I(x)$ is a neighborhood of $\text{extChartAt}_I(x)(x)$ in $E$. In other words, if $s$ is a neighborhood of $x$, then $\text{extChartAt}_I(x)(s)$ is a neighborhood of $\text{extChartAt}_I(x)(x)$ in $E$.
extChartAt_target_mem_nhdsWithin' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : (extChartAt I x).target ∈ 𝓝[range I] extChartAt I x y
Full source
theorem extChartAt_target_mem_nhdsWithin' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    (extChartAt I x).target ∈ 𝓝[range I] extChartAt I x y :=
  extend_target_mem_nhdsWithin _ <| by rwa [← extChartAt_source I]
Neighborhood Property of Extended Chart Target Within Range at a Point
Informal description
Let \( M \) be a manifold with corners modeled on \( (E, H) \) with model embedding \( I : H \to E \). For any points \( x, y \in M \) such that \( y \) lies in the source of the extended chart \( \text{extChartAt}_I(x) \), the target of \( \text{extChartAt}_I(x) \) is a neighborhood of \( \text{extChartAt}_I(x)(y) \) within the range of \( I \). In other words: \[ (\text{extChartAt}_I(x)).\text{target} \in \mathcal{N}_{\text{extChartAt}_I(x)(y)}|_{\text{range}(I)}. \]
extChartAt_target_mem_nhdsWithin theorem
(x : M) : (extChartAt I x).target ∈ 𝓝[range I] extChartAt I x x
Full source
theorem extChartAt_target_mem_nhdsWithin (x : M) :
    (extChartAt I x).target ∈ 𝓝[range I] extChartAt I x x :=
  extChartAt_target_mem_nhdsWithin' (mem_extChartAt_source x)
Neighborhood Property of Extended Chart Target at Base Point
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with model embedding $I: H \to E$, the target of the extended chart $\text{extChartAt}_I(x)$ is a neighborhood of $\text{extChartAt}_I(x)(x)$ within the range of $I$. In other words, there exists an open set $U \subseteq E$ containing $\text{extChartAt}_I(x)(x)$ such that $U \cap \text{range}(I) \subseteq (\text{extChartAt}_I(x)).\text{target}$.
extChartAt_target_mem_nhdsWithin_of_mem theorem
{x : M} {y : E} (hy : y ∈ (extChartAt I x).target) : (extChartAt I x).target ∈ 𝓝[range I] y
Full source
theorem extChartAt_target_mem_nhdsWithin_of_mem {x : M} {y : E} (hy : y ∈ (extChartAt I x).target) :
    (extChartAt I x).target ∈ 𝓝[range I] y := by
  rw [← (extChartAt I x).right_inv hy]
  apply extChartAt_target_mem_nhdsWithin'
  exact (extChartAt I x).map_target hy
Neighborhood Property of Extended Chart Target Within Range for Points in Target
Informal description
Let \( M \) be a manifold with corners modeled on \( (E, H) \) with model embedding \( I : H \to E \). For any point \( x \in M \) and any \( y \in E \) in the target of the extended chart \( \text{extChartAt}_I(x) \), the target set \( (\text{extChartAt}_I(x)).\text{target} \) is a neighborhood of \( y \) within the range of \( I \). In other words: \[ (\text{extChartAt}_I(x)).\text{target} \in \mathcal{N}_y|_{\text{range}(I)}. \]
extChartAt_target_union_compl_range_mem_nhds_of_mem theorem
{y : E} {x : M} (hy : y ∈ (extChartAt I x).target) : (extChartAt I x).target ∪ (range I)ᶜ ∈ 𝓝 y
Full source
theorem extChartAt_target_union_compl_range_mem_nhds_of_mem {y : E} {x : M}
    (hy : y ∈ (extChartAt I x).target) : (extChartAt I x).target ∪ (range I)ᶜ(extChartAt I x).target ∪ (range I)ᶜ ∈ 𝓝 y := by
  rw [← nhdsWithin_univ, ← union_compl_self (range I), nhdsWithin_union]
  exact Filter.union_mem_sup (extChartAt_target_mem_nhdsWithin_of_mem hy) self_mem_nhdsWithin
Neighborhood Property of Extended Chart Target Union with Complement of Range
Informal description
For any point $y$ in the target of the extended chart $\text{extChartAt}_I(x)$ at $x \in M$, the union of the chart's target with the complement of the range of $I$ is a neighborhood of $y$ in $E$. In other words: \[ (\text{extChartAt}_I(x)).\text{target} \cup (\text{range}\, I)^c \in \mathcal{N}(y). \]
isOpen_extChartAt_target theorem
[I.Boundaryless] (x : M) : IsOpen (extChartAt I x).target
Full source
/-- If we're boundaryless, `extChartAt` has open target -/
theorem isOpen_extChartAt_target [I.Boundaryless] (x : M) : IsOpen (extChartAt I x).target := by
  simp_rw [extChartAt_target, I.range_eq_univ, inter_univ]
  exact (PartialHomeomorph.open_target _).preimage I.continuous_symm
Openness of Extended Chart Target in Boundaryless Manifolds
Informal description
For a boundaryless model with corners $I$ and any point $x$ in a manifold $M$, the target of the extended chart $\text{extChartAt}_I(x)$ is an open subset of the model vector space $E$.
extChartAt_target_mem_nhds theorem
[I.Boundaryless] (x : M) : (extChartAt I x).target ∈ 𝓝 (extChartAt I x x)
Full source
/-- If we're boundaryless, `(extChartAt I x).target` is a neighborhood of the key point -/
theorem extChartAt_target_mem_nhds [I.Boundaryless] (x : M) :
    (extChartAt I x).target ∈ 𝓝 (extChartAt I x x) := by
  convert extChartAt_target_mem_nhdsWithin x
  simp only [I.range_eq_univ, nhdsWithin_univ]
Neighborhood Property of Extended Chart Target in Boundaryless Case
Informal description
For a boundaryless model with corners $I$ and any point $x$ in a manifold $M$, the target of the extended chart $\text{extChartAt}_I(x)$ is a neighborhood of $\text{extChartAt}_I(x)(x)$ in the model vector space $E$.
extChartAt_target_mem_nhds' theorem
[I.Boundaryless] {x : M} {y : E} (m : y ∈ (extChartAt I x).target) : (extChartAt I x).target ∈ 𝓝 y
Full source
/-- If we're boundaryless, `(extChartAt I x).target` is a neighborhood of any of its points -/
theorem extChartAt_target_mem_nhds' [I.Boundaryless] {x : M} {y : E}
    (m : y ∈ (extChartAt I x).target) : (extChartAt I x).target ∈ 𝓝 y :=
  (isOpen_extChartAt_target x).mem_nhds m
Extended Chart Target is Neighborhood of Any Point in Boundaryless Case
Informal description
For a boundaryless model with corners $I$, any point $x$ in a manifold $M$, and any point $y$ in the target of the extended chart $\text{extChartAt}_I(x)$, the target set $\text{extChartAt}_I(x).\text{target}$ is a neighborhood of $y$ in the model vector space $E$.
extChartAt_target_subset_range theorem
(x : M) : (extChartAt I x).target ⊆ range I
Full source
theorem extChartAt_target_subset_range (x : M) : (extChartAt I x).target ⊆ range I := by
  simp only [mfld_simps]
Extended Chart Target is Contained in Model Embedding Range
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, the target set of the extended chart $\text{extChartAt}_I(x)$ is a subset of the range of the model embedding $I \colon H \to E$.
nhdsWithin_extChartAt_target_eq' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : 𝓝[(extChartAt I x).target] extChartAt I x y = 𝓝[range I] extChartAt I x y
Full source
/-- Around the image of a point in the source, the neighborhoods are the same
within `(extChartAt I x).target` and within `range I`. -/
theorem nhdsWithin_extChartAt_target_eq' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    𝓝[(extChartAt I x).target] extChartAt I x y = 𝓝[range I] extChartAt I x y :=
  nhdsWithin_extend_target_eq _ <| by rwa [← extChartAt_source I]
Equality of Neighborhood Filters for Extended Chart Target and Model Range at a Point
Informal description
For any points $x$ and $y$ in a manifold $M$ modeled on $(E, H)$ with corners, if $y$ belongs to the source of the extended chart $\text{extChartAt}_I(x)$, then the neighborhood filter of $\text{extChartAt}_I(x)(y)$ within the target of $\text{extChartAt}_I(x)$ is equal to the neighborhood filter of $\text{extChartAt}_I(x)(y)$ within the range of the model embedding $I \colon H \to E$. That is, $$\mathcal{N}_{(\text{extChartAt}_I(x)).\text{target}}(\text{extChartAt}_I(x)(y)) = \mathcal{N}_{\text{range}(I)}(\text{extChartAt}_I(x)(y)).$$
nhdsWithin_extChartAt_target_eq_of_mem theorem
{x : M} {z : E} (hz : z ∈ (extChartAt I x).target) : 𝓝[(extChartAt I x).target] z = 𝓝[range I] z
Full source
/-- Around a point in the target, the neighborhoods are the same within `(extChartAt I x).target`
and within `range I`. -/
theorem nhdsWithin_extChartAt_target_eq_of_mem {x : M} {z : E} (hz : z ∈ (extChartAt I x).target) :
    𝓝[(extChartAt I x).target] z = 𝓝[range I] z := by
  rw [← PartialEquiv.right_inv (extChartAt I x) hz]
  exact nhdsWithin_extChartAt_target_eq' ((extChartAt I x).map_target hz)
Equality of Neighborhood Filters for Extended Chart Target and Model Range at a Point $z$
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, and for any point $z$ in the target of the extended chart $\text{extChartAt}_I(x)$, the neighborhood filter of $z$ within the target of $\text{extChartAt}_I(x)$ is equal to the neighborhood filter of $z$ within the range of the model embedding $I \colon H \to E$. That is, $$\mathcal{N}_{(\text{extChartAt}_I(x)).\text{target}}(z) = \mathcal{N}_{\text{range}(I)}(z).$$
nhdsWithin_extChartAt_target_eq theorem
(x : M) : 𝓝[(extChartAt I x).target] (extChartAt I x) x = 𝓝[range I] (extChartAt I x) x
Full source
/-- Around the image of the base point, the neighborhoods are the same
within `(extChartAt I x).target` and within `range I`. -/
theorem nhdsWithin_extChartAt_target_eq (x : M) :
    𝓝[(extChartAt I x).target] (extChartAt I x) x = 𝓝[range I] (extChartAt I x) x :=
  nhdsWithin_extChartAt_target_eq' (mem_extChartAt_source x)
Equality of Neighborhood Filters at Base Point in Extended Chart Target and Model Range
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, the neighborhood filter of $\text{extChartAt}_I(x)(x)$ within the target of the extended chart $\text{extChartAt}_I(x)$ is equal to the neighborhood filter of $\text{extChartAt}_I(x)(x)$ within the range of the model embedding $I \colon H \to E$. That is, $$\mathcal{N}_{(\text{extChartAt}_I(x)).\text{target}}(\text{extChartAt}_I(x)(x)) = \mathcal{N}_{\text{range}(I)}(\text{extChartAt}_I(x)(x)).$$
extChartAt_target_eventuallyEq' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : (extChartAt I x).target =ᶠ[𝓝 (extChartAt I x y)] range I
Full source
/-- Around the image of a point in the source, `(extChartAt I x).target` and `range I`
coincide locally. -/
theorem extChartAt_target_eventuallyEq' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    (extChartAt I x).target =ᶠ[𝓝 (extChartAt I x y)] range I :=
  nhdsWithin_eq_iff_eventuallyEq.1 (nhdsWithin_extChartAt_target_eq' hy)
Local Equality of Extended Chart Target and Model Range
Informal description
For any points $x$ and $y$ in a manifold $M$ modeled on $(E, H)$ with corners, if $y$ belongs to the source of the extended chart $\text{extChartAt}_I(x)$, then the target of $\text{extChartAt}_I(x)$ is eventually equal to the range of the model embedding $I \colon H \to E$ in the neighborhood filter of $\text{extChartAt}_I(x)(y)$. In other words, there exists a neighborhood $U$ of $\text{extChartAt}_I(x)(y)$ in $E$ such that $(\text{extChartAt}_I(x)).\text{target} \cap U = \text{range}(I) \cap U$.
extChartAt_target_eventuallyEq_of_mem theorem
{x : M} {z : E} (hz : z ∈ (extChartAt I x).target) : (extChartAt I x).target =ᶠ[𝓝 z] range I
Full source
/-- Around a point in the target, `(extChartAt I x).target` and `range I` coincide locally. -/
theorem extChartAt_target_eventuallyEq_of_mem {x : M} {z : E} (hz : z ∈ (extChartAt I x).target) :
    (extChartAt I x).target =ᶠ[𝓝 z] range I :=
  nhdsWithin_eq_iff_eventuallyEq.1 (nhdsWithin_extChartAt_target_eq_of_mem hz)
Local Equality of Extended Chart Target and Model Range at a Point $z$
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, and for any point $z$ in the target of the extended chart $\text{extChartAt}_I(x)$, the target set $(\text{extChartAt}_I(x)).\text{target}$ is eventually equal to the range of the model embedding $I \colon H \to E$ in the neighborhood filter of $z$. In other words, there exists a neighborhood $U$ of $z$ in $E$ such that $(\text{extChartAt}_I(x)).\text{target} \cap U = \text{range}(I) \cap U$.
extChartAt_target_eventuallyEq theorem
{x : M} : (extChartAt I x).target =ᶠ[𝓝 (extChartAt I x x)] range I
Full source
/-- Around the image of the base point, `(extChartAt I x).target` and `range I` coincide locally. -/
theorem extChartAt_target_eventuallyEq {x : M} :
    (extChartAt I x).target =ᶠ[𝓝 (extChartAt I x x)] range I :=
  nhdsWithin_eq_iff_eventuallyEq.1 (nhdsWithin_extChartAt_target_eq x)
Local Equality of Extended Chart Target and Model Range at Base Point
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, the target of the extended chart $\text{extChartAt}_I(x)$ is eventually equal to the range of the model embedding $I \colon H \to E$ in the neighborhood filter of $\text{extChartAt}_I(x)(x)$. In other words, there exists a neighborhood $U$ of $\text{extChartAt}_I(x)(x)$ in $E$ such that $(\text{extChartAt}_I(x)).\text{target} \cap U = \text{range}(I) \cap U$.
continuousAt_extChartAt_symm'' theorem
{x : M} {y : E} (h : y ∈ (extChartAt I x).target) : ContinuousAt (extChartAt I x).symm y
Full source
theorem continuousAt_extChartAt_symm'' {x : M} {y : E} (h : y ∈ (extChartAt I x).target) :
    ContinuousAt (extChartAt I x).symm y :=
  continuousAt_extend_symm' _ h
Continuity of the Inverse Extended Chart at Points in Its Target
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $\text{extChartAt}_I(x)$ be the extended chart at $x \in M$. For any point $y \in E$ in the target of $\text{extChartAt}_I(x)$, the inverse map $(\text{extChartAt}_I(x))^{-1}$ is continuous at $y$.
continuousAt_extChartAt_symm' theorem
{x x' : M} (h : x' ∈ (extChartAt I x).source) : ContinuousAt (extChartAt I x).symm (extChartAt I x x')
Full source
theorem continuousAt_extChartAt_symm' {x x' : M} (h : x' ∈ (extChartAt I x).source) :
    ContinuousAt (extChartAt I x).symm (extChartAt I x x') :=
  continuousAt_extChartAt_symm'' <| (extChartAt I x).map_source h
Continuity of the Inverse Extended Chart at Points in Its Source
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $\text{extChartAt}_I(x)$ be the extended chart at $x \in M$. For any point $x' \in M$ in the source of $\text{extChartAt}_I(x)$, the inverse map $(\text{extChartAt}_I(x))^{-1}$ is continuous at the image point $\text{extChartAt}_I(x)(x') \in E$.
continuousAt_extChartAt_symm theorem
(x : M) : ContinuousAt (extChartAt I x).symm ((extChartAt I x) x)
Full source
theorem continuousAt_extChartAt_symm (x : M) :
    ContinuousAt (extChartAt I x).symm ((extChartAt I x) x) :=
  continuousAt_extChartAt_symm' (mem_extChartAt_source x)
Continuity of the Inverse Extended Chart at Its Image Point
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the inverse of the extended chart $\text{extChartAt}_I(x)^{-1}$ is continuous at the image point $\text{extChartAt}_I(x)(x) \in E$.
continuousOn_extChartAt_symm theorem
(x : M) : ContinuousOn (extChartAt I x).symm (extChartAt I x).target
Full source
theorem continuousOn_extChartAt_symm (x : M) :
    ContinuousOn (extChartAt I x).symm (extChartAt I x).target :=
  fun _y hy => (continuousAt_extChartAt_symm'' hy).continuousWithinAt
Continuity of the Inverse Extended Chart on Its Target
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the inverse of the extended chart $\text{extChartAt}_I(x)^{-1}$ is continuous on its target set in $E$.
extChartAt_target_subset_closure_interior theorem
{x : M} : (extChartAt I x).target ⊆ closure (interior (extChartAt I x).target)
Full source
lemma extChartAt_target_subset_closure_interior {x : M} :
    (extChartAt I x).target ⊆ closure (interior (extChartAt I x).target) := by
  intro y hy
  rw [mem_closure_iff_nhds]
  intro t ht
  have A : t ∩ ((extChartAt I x).target ∪ (range I)ᶜ)t ∩ ((extChartAt I x).target ∪ (range I)ᶜ) ∈ 𝓝 y :=
    inter_mem ht (extChartAt_target_union_compl_range_mem_nhds_of_mem hy)
  have B : y ∈ closure (interior (range I)) := by
    apply I.range_subset_closure_interior (extChartAt_target_subset_range x hy)
  obtain ⟨z, ⟨tz, h'z⟩, hz⟩ :
      (t ∩ ((extChartAt I x).target ∪ (range ↑I)ᶜ)t ∩ ((extChartAt I x).target ∪ (range ↑I)ᶜ) ∩ interior (range I)).Nonempty :=
    mem_closure_iff_nhds.1 B _ A
  refine ⟨z, ⟨tz, ?_⟩⟩
  have h''z : z ∈ (extChartAt I x).target := by simpa [interior_subset hz] using h'z
  exact (extChartAt_target_eventuallyEq_of_mem h''z).symm.mem_interior hz
Extended Chart Target is Contained in Closure of Interior
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, the target of the extended chart $\text{extChartAt}_I(x)$ is contained in the closure of its interior, i.e., \[ (\text{extChartAt}_I(x)).\text{target} \subseteq \overline{\text{interior}((\text{extChartAt}_I(x)).\text{target})}. \]
interior_extChartAt_target_nonempty theorem
(x : M) : (interior (extChartAt I x).target).Nonempty
Full source
theorem interior_extChartAt_target_nonempty (x : M) :
    (interior (extChartAt I x).target).Nonempty := by
  by_contra! H
  have := extChartAt_target_subset_closure_interior (mem_extChartAt_target (I := I) x)
  simp only [H, closure_empty, mem_empty_iff_false] at this
Nonempty Interior of Extended Chart Target
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ with corners, the interior of the target set of the extended chart $\text{extChartAt}_I(x)$ is nonempty.
extChartAt_mem_closure_interior theorem
{x₀ x : M} (hx : x ∈ closure (interior s)) (h'x : x ∈ (extChartAt I x₀).source) : extChartAt I x₀ x ∈ closure (interior ((extChartAt I x₀).symm ⁻¹' s ∩ (extChartAt I x₀).target))
Full source
lemma extChartAt_mem_closure_interior {x₀ x : M}
    (hx : x ∈ closure (interior s)) (h'x : x ∈ (extChartAt I x₀).source) :
    extChartAtextChartAt I x₀ x ∈
      closure (interior ((extChartAt I x₀).symm ⁻¹' s ∩ (extChartAt I x₀).target)) := by
  simp_rw [mem_closure_iff, interior_inter, ← inter_assoc]
  intro o o_open ho
  obtain ⟨y, ⟨yo, hy⟩, ys⟩ :
      ((extChartAt I x₀) ⁻¹' o(extChartAt I x₀) ⁻¹' o ∩ (extChartAt I x₀).source(extChartAt I x₀) ⁻¹' o ∩ (extChartAt I x₀).source ∩ interior s).Nonempty := by
    have : (extChartAt I x₀) ⁻¹' o(extChartAt I x₀) ⁻¹' o ∈ 𝓝 x := by
      apply (continuousAt_extChartAt' h'x).preimage_mem_nhds (o_open.mem_nhds ho)
    refine (mem_closure_iff_nhds.1 hx) _ (inter_mem this ?_)
    apply (isOpen_extChartAt_source x₀).mem_nhds h'x
  have A : interiorinterior (↑(extChartAt I x₀).symm ⁻¹' s) ∈ 𝓝 (extChartAt I x₀ y) := by
    simp only [interior_mem_nhds]
    apply (continuousAt_extChartAt_symm' hy).preimage_mem_nhds
    simp only [hy, PartialEquiv.left_inv]
    exact mem_interior_iff_mem_nhds.mp ys
  have B : (extChartAt I x₀) y ∈ closure (interior (extChartAt I x₀).target) := by
    apply extChartAt_target_subset_closure_interior (x := x₀)
    exact (extChartAt I x₀).map_source hy
  exact mem_closure_iff_nhds.1 B _ (inter_mem (o_open.mem_nhds yo) A)
Image under Extended Chart Belongs to Closure of Interior of Preimage Intersection
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $x_0, x \in M$ be points such that $x$ belongs to the closure of the interior of a subset $s \subseteq M$ and $x$ is in the source of the extended chart $\text{extChartAt}_I(x_0)$. Then the image of $x$ under $\text{extChartAt}_I(x_0)$ belongs to the closure of the interior of the set obtained by intersecting the preimage of $s$ under the inverse extended chart with the target of $\text{extChartAt}_I(x_0)$. In other words, under the given conditions, we have: \[ \text{extChartAt}_I(x_0)(x) \in \overline{\text{interior}\left((\text{extChartAt}_I(x_0))^{-1}(s) \cap (\text{extChartAt}_I(x_0)).\text{target}\right)}. \]
isOpen_extChartAt_preimage' theorem
(x : M) {s : Set E} (hs : IsOpen s) : IsOpen ((extChartAt I x).source ∩ extChartAt I x ⁻¹' s)
Full source
theorem isOpen_extChartAt_preimage' (x : M) {s : Set E} (hs : IsOpen s) :
    IsOpen ((extChartAt I x).source ∩ extChartAt I x ⁻¹' s) :=
  isOpen_extend_preimage' _ hs
Openness of Preimage under Extended Chart at a Point
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any point \( x \in M \) and any open subset \( s \subseteq E \), the intersection of the source of the extended chart \( \text{extChartAt}_I(x) \) with the preimage of \( s \) under \( \text{extChartAt}_I(x) \) is an open subset of \( M \). In other words, if \( s \) is open in \( E \), then \( (\text{extChartAt}_I(x))^{-1}(s) \cap \text{dom}(\text{extChartAt}_I(x)) \) is open in \( M \).
isOpen_extChartAt_preimage theorem
(x : M) {s : Set E} (hs : IsOpen s) : IsOpen ((chartAt H x).source ∩ extChartAt I x ⁻¹' s)
Full source
theorem isOpen_extChartAt_preimage (x : M) {s : Set E} (hs : IsOpen s) :
    IsOpen ((chartAt H x).source ∩ extChartAt I x ⁻¹' s) := by
  rw [← extChartAt_source I]
  exact isOpen_extChartAt_preimage' x hs
Openness of Preimage under Extended Chart at a Point Relative to Chart Source
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any point \( x \in M \) and any open subset \( s \subseteq E \), the intersection of the source of the chart \( \text{chartAt}_H(x) \) with the preimage of \( s \) under the extended chart \( \text{extChartAt}_I(x) \) is an open subset of \( M \). In other words, if \( s \) is open in \( E \), then \( (\text{extChartAt}_I(x))^{-1}(s) \cap \text{dom}(\text{chartAt}_H(x)) \) is open in \( M \).
map_extChartAt_nhdsWithin_eq_image' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : map (extChartAt I x) (𝓝[s] y) = 𝓝[extChartAt I x '' ((extChartAt I x).source ∩ s)] extChartAt I x y
Full source
theorem map_extChartAt_nhdsWithin_eq_image' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    map (extChartAt I x) (𝓝[s] y) =
      𝓝[extChartAt I x '' ((extChartAt I x).source ∩ s)] extChartAt I x y :=
  map_extend_nhdsWithin_eq_image _ <| by rwa [← extChartAt_source I]
Equality of Neighborhood Filters under Extended Chart Mapping at a Point
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H ) \) via the model with corners \( I \). For any points \( x, y \in M \) such that \( y \) belongs to the source of the extended chart \( \text{extChartAt}_I(x) \), and for any subset \( s \subseteq M \), the image under \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( y \) within \( s \) equals the neighborhood filter of \( \text{extChartAt}_I(x)(y) \) within the image of the intersection of the source of \( \text{extChartAt}_I(x) \) with \( s \). In other words, for \( y \in \text{source}(\text{extChartAt}_I(x)) \), we have: \[ \text{extChartAt}_I(x)_*(\mathcal{N}_s(y)) = \mathcal{N}_{\text{extChartAt}_I(x)(\text{source}(\text{extChartAt}_I(x)) \cap s)}(\text{extChartAt}_I(x)(y)) \]
map_extChartAt_nhdsWithin_eq_image theorem
(x : M) : map (extChartAt I x) (𝓝[s] x) = 𝓝[extChartAt I x '' ((extChartAt I x).source ∩ s)] extChartAt I x x
Full source
theorem map_extChartAt_nhdsWithin_eq_image (x : M) :
    map (extChartAt I x) (𝓝[s] x) =
      𝓝[extChartAt I x '' ((extChartAt I x).source ∩ s)] extChartAt I x x :=
  map_extChartAt_nhdsWithin_eq_image' (mem_extChartAt_source x)
Equality of Neighborhood Filters under Extended Chart Mapping at a Point within a Subset
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any point \( x \in M \) and any subset \( s \subseteq M \), the image under the extended chart \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( x \) within \( s \) equals the neighborhood filter of \( \text{extChartAt}_I(x)(x) \) within the image of the intersection of the source of \( \text{extChartAt}_I(x) \) with \( s \). In other words, we have: \[ \text{extChartAt}_I(x)_*(\mathcal{N}_s(x)) = \mathcal{N}_{\text{extChartAt}_I(x)(\text{source}(\text{extChartAt}_I(x)) \cap s)}(\text{extChartAt}_I(x)(x)) \]
map_extChartAt_nhdsWithin' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : map (extChartAt I x) (𝓝[s] y) = 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x y
Full source
theorem map_extChartAt_nhdsWithin' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    map (extChartAt I x) (𝓝[s] y) = 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x y :=
  map_extend_nhdsWithin _ <| by rwa [← extChartAt_source I]
Equality of Neighborhood Filters under Extended Chart Mapping with Preimage Condition at a Point
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any points \( x, y \in M \) such that \( y \) belongs to the source of the extended chart \( \text{extChartAt}_I(x) \), and for any subset \( s \subseteq M \), the image under \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( y \) within \( s \) equals the neighborhood filter of \( \text{extChartAt}_I(x)(y) \) within the intersection of the preimage of \( s \) under the inverse of \( \text{extChartAt}_I(x) \) and the range of \( I \). In other words, for \( y \in \text{source}(\text{extChartAt}_I(x)) \), we have: \[ \text{extChartAt}_I(x)_*(\mathcal{N}_s(y)) = \mathcal{N}_{(\text{extChartAt}_I(x)^{-1}(s)) \cap \text{range}(I)}(\text{extChartAt}_I(x)(y)) \]
map_extChartAt_nhdsWithin theorem
(x : M) : map (extChartAt I x) (𝓝[s] x) = 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x x
Full source
theorem map_extChartAt_nhdsWithin (x : M) :
    map (extChartAt I x) (𝓝[s] x) = 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x x :=
  map_extChartAt_nhdsWithin' (mem_extChartAt_source x)
Neighborhood Filter Equality under Extended Chart Mapping within a Subset
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any point \( x \in M \) and any subset \( s \subseteq M \), the image under the extended chart \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( x \) within \( s \) equals the neighborhood filter of \( \text{extChartAt}_I(x)(x) \) within the intersection of the preimage of \( s \) under the inverse of \( \text{extChartAt}_I(x) \) and the range of \( I \). In other words, we have: \[ \text{extChartAt}_I(x)_*(\mathcal{N}_s(x)) = \mathcal{N}_{(\text{extChartAt}_I(x)^{-1}(s)) \cap \text{range}(I)}(\text{extChartAt}_I(x)(x)) \]
map_extChartAt_symm_nhdsWithin' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : map (extChartAt I x).symm (𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x y) = 𝓝[s] y
Full source
theorem map_extChartAt_symm_nhdsWithin' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    map (extChartAt I x).symm (𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x y) =
      𝓝[s] y :=
  map_extend_symm_nhdsWithin _ <| by rwa [← extChartAt_source I]
Inverse Extended Chart Preserves Neighborhood Filters with Preimage Condition at a Point
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any points \( x, y \in M \) such that \( y \) belongs to the source of the extended chart \( \text{extChartAt}_I(x) \), and for any subset \( s \subseteq M \), the image under the inverse of \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( \text{extChartAt}_I(x)(y) \) within the intersection of the preimage of \( s \) under the inverse of \( \text{extChartAt}_I(x) \) and the range of \( I \), equals the neighborhood filter of \( y \) within \( s \). In other words, for \( y \in \text{source}(\text{extChartAt}_I(x)) \), we have: \[ (\text{extChartAt}_I(x)^{-1})_*(\mathcal{N}_{(\text{extChartAt}_I(x)^{-1}(s)) \cap \text{range}(I)}(\text{extChartAt}_I(x)(y))) = \mathcal{N}_s(y). \]
map_extChartAt_symm_nhdsWithin_range' theorem
{x y : M} (hy : y ∈ (extChartAt I x).source) : map (extChartAt I x).symm (𝓝[range I] extChartAt I x y) = 𝓝 y
Full source
theorem map_extChartAt_symm_nhdsWithin_range' {x y : M} (hy : y ∈ (extChartAt I x).source) :
    map (extChartAt I x).symm (𝓝[range I] extChartAt I x y) = 𝓝 y :=
  map_extend_symm_nhdsWithin_range _ <| by rwa [← extChartAt_source I]
Inverse Extended Chart Preserves Neighborhood Filters within Range at a Point
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any points \( x, y \in M \) such that \( y \) belongs to the domain of the extended chart \( \text{extChartAt}_I(x) \), the image under the inverse of \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( \text{extChartAt}_I(x)(y) \) within the range of \( I \) equals the neighborhood filter of \( y \). In other words, for \( y \in \text{source}(\text{extChartAt}_I(x)) \), we have: \[ (\text{extChartAt}_I(x)^{-1})_*(\mathcal{N}_{\text{range}(I)}(\text{extChartAt}_I(x)(y))) = \mathcal{N}(y). \]
map_extChartAt_symm_nhdsWithin theorem
(x : M) : map (extChartAt I x).symm (𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x x) = 𝓝[s] x
Full source
theorem map_extChartAt_symm_nhdsWithin (x : M) :
    map (extChartAt I x).symm (𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] extChartAt I x x) =
      𝓝[s] x :=
  map_extChartAt_symm_nhdsWithin' (mem_extChartAt_source x)
Inverse Extended Chart Preserves Neighborhood Filters at a Point within a Subset
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any point \( x \in M \) and any subset \( s \subseteq M \), the image under the inverse of the extended chart \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( \text{extChartAt}_I(x)(x) \) within the intersection of the preimage of \( s \) under the inverse of \( \text{extChartAt}_I(x) \) and the range of \( I \), equals the neighborhood filter of \( x \) within \( s \). In other words, for \( x \in \text{source}(\text{extChartAt}_I(x)) \), we have: \[ (\text{extChartAt}_I(x)^{-1})_*(\mathcal{N}_{(\text{extChartAt}_I(x)^{-1}(s)) \cap \text{range}(I)}(\text{extChartAt}_I(x)(x))) = \mathcal{N}_s(x). \]
map_extChartAt_symm_nhdsWithin_range theorem
(x : M) : map (extChartAt I x).symm (𝓝[range I] extChartAt I x x) = 𝓝 x
Full source
theorem map_extChartAt_symm_nhdsWithin_range (x : M) :
    map (extChartAt I x).symm (𝓝[range I] extChartAt I x x) = 𝓝 x :=
  map_extChartAt_symm_nhdsWithin_range' (mem_extChartAt_source x)
Inverse Extended Chart Preserves Neighborhood Filters within Range at Base Point
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any point \( x \in M \), the image under the inverse of the extended chart \( \text{extChartAt}_I(x) \) of the neighborhood filter of \( \text{extChartAt}_I(x)(x) \) within the range of \( I \) equals the neighborhood filter of \( x \). In other words, for \( x \in M \), we have: \[ (\text{extChartAt}_I(x)^{-1})_*(\mathcal{N}_{\text{range}(I)}(\text{extChartAt}_I(x)(x))) = \mathcal{N}(x). \]
extChartAt_preimage_mem_nhdsWithin' theorem
{x x' : M} (h : x' ∈ (extChartAt I x).source) (ht : t ∈ 𝓝[s] x') : (extChartAt I x).symm ⁻¹' t ∈ 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x'
Full source
/-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point
in the source is a neighborhood of the preimage, within a set. -/
theorem extChartAt_preimage_mem_nhdsWithin' {x x' : M} (h : x' ∈ (extChartAt I x).source)
    (ht : t ∈ 𝓝[s] x') :
    (extChartAt I x).symm ⁻¹' t(extChartAt I x).symm ⁻¹' t ∈ 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x' := by
  rwa [← map_extChartAt_symm_nhdsWithin' h, mem_map] at ht
Neighborhood Preservation Under Inverse Extended Chart Within a Set
Informal description
Let \( M \) be a smooth manifold with corners modeled on \( (E, H) \) via the model with corners \( I \). For any points \( x, x' \in M \) such that \( x' \) belongs to the source of the extended chart \( \text{extChartAt}_I(x) \), and for any subset \( s \subseteq M \), if \( t \) is a neighborhood of \( x' \) within \( s \), then the preimage of \( t \) under the inverse of \( \text{extChartAt}_I(x) \) is a neighborhood of \( \text{extChartAt}_I(x)(x') \) within the intersection of the preimage of \( s \) under the inverse of \( \text{extChartAt}_I(x) \) and the range of \( I \). In other words, for \( x' \in \text{source}(\text{extChartAt}_I(x)) \) and \( t \in \mathcal{N}_s(x') \), we have: \[ (\text{extChartAt}_I(x)^{-1})^{-1}(t) \in \mathcal{N}_{(\text{extChartAt}_I(x)^{-1}(s)) \cap \text{range}(I)}(\text{extChartAt}_I(x)(x')). \]
extChartAt_preimage_mem_nhdsWithin theorem
{x : M} (ht : t ∈ 𝓝[s] x) : (extChartAt I x).symm ⁻¹' t ∈ 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x
Full source
/-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of the
base point is a neighborhood of the preimage, within a set. -/
theorem extChartAt_preimage_mem_nhdsWithin {x : M} (ht : t ∈ 𝓝[s] x) :
    (extChartAt I x).symm ⁻¹' t(extChartAt I x).symm ⁻¹' t ∈ 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x :=
  extChartAt_preimage_mem_nhdsWithin' (mem_extChartAt_source x) ht
Neighborhood Preservation Under Inverse Extended Chart Within a Set at Base Point
Informal description
Let $M$ be a smooth manifold with corners modeled on $(E, H)$ via the model with corners $I$. For any point $x \in M$ and any neighborhood $t$ of $x$ within a subset $s \subseteq M$, the preimage of $t$ under the inverse of the extended chart $\text{extChartAt}_I(x)^{-1}$ is a neighborhood of $\text{extChartAt}_I(x)(x)$ within the intersection of the preimage of $s$ under $\text{extChartAt}_I(x)^{-1}$ and the range of $I$. In other words, for $t \in \mathcal{N}_s(x)$, we have: \[ (\text{extChartAt}_I(x)^{-1})^{-1}(t) \in \mathcal{N}_{(\text{extChartAt}_I(x)^{-1}(s)) \cap \text{range}(I)}(\text{extChartAt}_I(x)(x)). \]
extChartAt_preimage_mem_nhds' theorem
{x x' : M} (h : x' ∈ (extChartAt I x).source) (ht : t ∈ 𝓝 x') : (extChartAt I x).symm ⁻¹' t ∈ 𝓝 (extChartAt I x x')
Full source
theorem extChartAt_preimage_mem_nhds' {x x' : M} (h : x' ∈ (extChartAt I x).source)
    (ht : t ∈ 𝓝 x') : (extChartAt I x).symm ⁻¹' t(extChartAt I x).symm ⁻¹' t ∈ 𝓝 (extChartAt I x x') :=
  extend_preimage_mem_nhds _ (by rwa [← extChartAt_source I]) ht
Neighborhood preservation under inverse extended chart at a point
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$, and let $x, x' \in M$ with $x'$ in the domain of the extended chart $\text{extChartAt}_I(x)$. For any neighborhood $t$ of $x'$ in $M$, the preimage of $t$ under the inverse of the extended chart $(\text{extChartAt}_I(x))^{-1}$ is a neighborhood of $\text{extChartAt}_I(x)(x')$ in $E$.
extChartAt_preimage_mem_nhds theorem
{x : M} (ht : t ∈ 𝓝 x) : (extChartAt I x).symm ⁻¹' t ∈ 𝓝 ((extChartAt I x) x)
Full source
/-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point
is a neighborhood of the preimage. -/
theorem extChartAt_preimage_mem_nhds {x : M} (ht : t ∈ 𝓝 x) :
    (extChartAt I x).symm ⁻¹' t(extChartAt I x).symm ⁻¹' t ∈ 𝓝 ((extChartAt I x) x) := by
  apply (continuousAt_extChartAt_symm x).preimage_mem_nhds
  rwa [(extChartAt I x).left_inv (mem_extChartAt_source _)]
Neighborhood preservation under inverse extended chart
Informal description
Let $M$ be a manifold with corners modeled on $(E, H)$. For any point $x \in M$ and any neighborhood $t$ of $x$ in $M$, the preimage of $t$ under the inverse of the extended chart $\text{extChartAt}_I(x)^{-1}$ is a neighborhood of $\text{extChartAt}_I(x)(x)$ in $E$.
extChartAt_preimage_inter_eq theorem
(x : M) : (extChartAt I x).symm ⁻¹' (s ∩ t) ∩ range I = (extChartAt I x).symm ⁻¹' s ∩ range I ∩ (extChartAt I x).symm ⁻¹' t
Full source
/-- Technical lemma to rewrite suitably the preimage of an intersection under an extended chart, to
bring it into a convenient form to apply derivative lemmas. -/
theorem extChartAt_preimage_inter_eq (x : M) :
    (extChartAt I x).symm ⁻¹' (s ∩ t)(extChartAt I x).symm ⁻¹' (s ∩ t) ∩ range I =
      (extChartAt I x).symm ⁻¹' s(extChartAt I x).symm ⁻¹' s ∩ range I(extChartAt I x).symm ⁻¹' s ∩ range I ∩ (extChartAt I x).symm ⁻¹' t := by
  mfld_set_tac
Preimage of Intersection under Inverse Extended Chart Equals Intersection of Preimages
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, the preimage under the inverse extended chart $\text{extChartAt}_I(x)^{-1}$ of the intersection $s \cap t$ intersected with the range of the model embedding $I$ equals the intersection of the preimage of $s$ and the range of $I$ with the preimage of $t$. More precisely: $$(\text{extChartAt}_I(x)^{-1})^{-1}(s \cap t) \cap \text{range}(I) = (\text{extChartAt}_I(x)^{-1})^{-1}(s) \cap \text{range}(I) \cap (\text{extChartAt}_I(x)^{-1})^{-1}(t)$$
ContinuousWithinAt.nhdsWithin_extChartAt_symm_preimage_inter_range theorem
{f : M → M'} {x : M} (hc : ContinuousWithinAt f s x) : 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x x) = 𝓝[(extChartAt I x).target ∩ (extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' (f x)).source)] (extChartAt I x x)
Full source
theorem ContinuousWithinAt.nhdsWithin_extChartAt_symm_preimage_inter_range
    {f : M → M'} {x : M} (hc : ContinuousWithinAt f s x) :
    𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x x) =
      𝓝[(extChartAt I x).target ∩
        (extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' (f x)).source)] (extChartAt I x x) := by
  rw [← (extChartAt I x).image_source_inter_eq', ← map_extChartAt_nhdsWithin_eq_image,
    ← map_extChartAt_nhdsWithin, nhdsWithin_inter_of_mem']
  exact hc (extChartAt_source_mem_nhds _)
Equality of Neighborhood Filters under Extended Chart Mapping for Continuous Functions on Manifolds with Corners
Informal description
Let $M$ and $M'$ be smooth manifolds with corners modeled on $(E, H)$ and $(E', H')$ respectively, via model embeddings $I$ and $I'$. Let $f \colon M \to M'$ be a continuous function within a subset $s \subseteq M$ at a point $x \in M$. Then the neighborhood filter of $\text{extChartAt}_I(x)(x)$ within the intersection of the preimage of $s$ under $\text{extChartAt}_I(x)^{-1}$ and the range of $I$ is equal to the neighborhood filter of $\text{extChartAt}_I(x)(x)$ within the intersection of the target of $\text{extChartAt}_I(x)$ and the preimage of $s \cap f^{-1}(\text{extChartAt}_{I'}(f(x)).\text{source})$ under $\text{extChartAt}_I(x)^{-1}$. In other words: \[ \mathcal{N}_{(\text{extChartAt}_I(x)^{-1}(s)) \cap \text{range}(I)}(\text{extChartAt}_I(x)(x)) = \mathcal{N}_{\text{extChartAt}_I(x).\text{target} \cap \text{extChartAt}_I(x)^{-1}(s \cap f^{-1}(\text{extChartAt}_{I'}(f(x)).\text{source}))}(\text{extChartAt}_I(x)(x)) \]
ContinuousWithinAt.extChartAt_symm_preimage_inter_range_eventuallyEq theorem
{f : M → M'} {x : M} (hc : ContinuousWithinAt f s x) : ((extChartAt I x).symm ⁻¹' s ∩ range I : Set E) =ᶠ[𝓝 (extChartAt I x x)] ((extChartAt I x).target ∩ (extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' (f x)).source) : Set E)
Full source
theorem ContinuousWithinAt.extChartAt_symm_preimage_inter_range_eventuallyEq
    {f : M → M'} {x : M} (hc : ContinuousWithinAt f s x) :
    ((extChartAt I x).symm ⁻¹' s ∩ range I : Set E) =ᶠ[𝓝 (extChartAt I x x)]
      ((extChartAt I x).target ∩
        (extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' (f x)).source) : Set E) := by
  rw [← nhdsWithin_eq_iff_eventuallyEq]
  exact hc.nhdsWithin_extChartAt_symm_preimage_inter_range
Eventual Equality of Preimage Sets under Extended Chart for Continuous Functions on Manifolds with Corners
Informal description
Let $M$ and $M'$ be smooth manifolds with corners modeled on $(E, H)$ and $(E', H')$ respectively, via model embeddings $I$ and $I'$. Let $f \colon M \to M'$ be a function that is continuous within a subset $s \subseteq M$ at a point $x \in M$. Then, in the model space $E$, the intersection of the preimage of $s$ under the inverse extended chart $\text{extChartAt}_I(x)^{-1}$ with the range of $I$ is eventually equal (in the neighborhood filter of $\text{extChartAt}_I(x)(x)$) to the intersection of the target of $\text{extChartAt}_I(x)$ with the preimage of $s \cap f^{-1}(\text{extChartAt}_{I'}(f(x)).\text{source})$ under $\text{extChartAt}_I(x)^{-1}$. In other words: \[ (\text{extChartAt}_I(x)^{-1}(s) \cap \text{range}(I)) =_{\mathcal{N}(\text{extChartAt}_I(x)(x))} (\text{extChartAt}_I(x).\text{target} \cap \text{extChartAt}_I(x)^{-1}(s \cap f^{-1}(\text{extChartAt}_{I'}(f(x)).\text{source}))) \]
ext_coord_change_source theorem
(x x' : M) : ((extChartAt I x').symm ≫ extChartAt I x).source = I '' ((chartAt H x').symm ≫ₕ chartAt H x).source
Full source
theorem ext_coord_change_source (x x' : M) :
    ((extChartAt I x').symm ≫ extChartAt I x).source =
      I '' ((chartAt H x').symm ≫ₕ chartAt H x).source :=
  extend_coord_change_source _ _
Source of Extended Coordinate Change Equals Image of Original Coordinate Change Source
Informal description
For any two points $x$ and $x'$ in a manifold $M$ modeled on $(E, H)$, the source of the extended coordinate change between the extended charts at $x$ and $x'$ equals the image under the model embedding $I : H \to E$ of the source of the coordinate change between the original charts at $x$ and $x'$. More precisely, let $\text{extChartAt}_I(x)$ and $\text{extChartAt}_I(x')$ be the extended charts at $x$ and $x'$ respectively, obtained by composing the original charts with $I$. Then: $$\text{source}\left((\text{extChartAt}_I(x'))^{-1} \circ \text{extChartAt}_I(x)\right) = I\left(\text{source}\left((\text{chartAt}_H(x'))^{-1} \circ \text{chartAt}_H(x)\right)\right)$$
contDiffOn_ext_coord_change theorem
[IsManifold I n M] (x x' : M) : ContDiffOn 𝕜 n (extChartAt I x ∘ (extChartAt I x').symm) ((extChartAt I x').symm ≫ extChartAt I x).source
Full source
theorem contDiffOn_ext_coord_change [IsManifold I n M] (x x' : M) :
    ContDiffOn 𝕜 n (extChartAtextChartAt I x ∘ (extChartAt I x').symm)
      ((extChartAt I x').symm ≫ extChartAt I x).source :=
  contDiffOn_extend_coord_change (chart_mem_maximalAtlas x) (chart_mem_maximalAtlas x')
$C^n$-Differentiability of Extended Chart Coordinate Changes on Manifolds with Corners
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$ with embedding $I : H \to E$. For any two points $x, x' \in M$, the coordinate change map between their extended charts, given by $\text{extChartAt}_I(x) \circ (\text{extChartAt}_I(x'))^{-1}$, is $C^n$-differentiable on its domain of definition (the source of the composition $(\text{extChartAt}_I(x'))^{-1} \circ \text{extChartAt}_I(x)$).
contDiffWithinAt_ext_coord_change theorem
[IsManifold I n M] (x x' : M) {y : E} (hy : y ∈ ((extChartAt I x').symm ≫ extChartAt I x).source) : ContDiffWithinAt 𝕜 n (extChartAt I x ∘ (extChartAt I x').symm) (range I) y
Full source
theorem contDiffWithinAt_ext_coord_change [IsManifold I n M] (x x' : M) {y : E}
    (hy : y ∈ ((extChartAt I x').symm ≫ extChartAt I x).source) :
    ContDiffWithinAt 𝕜 n (extChartAtextChartAt I x ∘ (extChartAt I x').symm) (range I) y :=
  contDiffWithinAt_extend_coord_change (chart_mem_maximalAtlas x) (chart_mem_maximalAtlas x') hy
$C^n$-Differentiability of Extended Chart Coordinate Changes at a Point
Informal description
Let $M$ be a $C^n$ manifold with corners modeled on $(E, H)$ with embedding $I : H \to E$. For any two points $x, x' \in M$ and any point $y \in E$ in the domain of the extended coordinate change $(\text{extChartAt}_I(x'))^{-1} \circ \text{extChartAt}_I(x)$, the composition $\text{extChartAt}_I(x) \circ (\text{extChartAt}_I(x'))^{-1}$ is $C^n$-differentiable at $y$ within the range of $I$.
writtenInExtChartAt definition
(x : M) (f : M → M') : E → E'
Full source
/-- Conjugating a function to write it in the preferred charts around `x`.
The manifold derivative of `f` will just be the derivative of this conjugated function. -/
@[simp, mfld_simps]
def writtenInExtChartAt (x : M) (f : M → M') : E → E' :=
  extChartAtextChartAt I' (f x) ∘ f ∘ (extChartAt I x).symm
Local representation of a function in extended charts
Informal description
Given a point \( x \) in a manifold \( M \) modeled on \( (E, H) \) and a function \( f : M \to M' \) between manifolds, the function \( \text{writtenInExtChartAt}_I^{I'}(x, f) \) is the representation of \( f \) in the extended charts around \( x \) and \( f(x) \). Specifically, it is the composition of the extended chart at \( f(x) \) in \( M' \), the function \( f \), and the inverse of the extended chart at \( x \) in \( M \), yielding a map from \( E \) to \( E' \). More precisely, for \( y \in E \) in the target of the extended chart at \( x \), the function is defined as: \[ \text{writtenInExtChartAt}_I^{I'}(x, f)(y) = \text{extChartAt}_{I'}(f(x)) \circ f \circ (\text{extChartAt}_I(x))^{-1}(y). \] This construction allows the study of \( f \) locally in the model vector spaces \( E \) and \( E' \), facilitating the computation of derivatives and other local properties.
writtenInExtChartAt_chartAt theorem
{x : M} {y : E} (h : y ∈ (extChartAt I x).target) : writtenInExtChartAt I I x (chartAt H x) y = y
Full source
theorem writtenInExtChartAt_chartAt {x : M} {y : E} (h : y ∈ (extChartAt I x).target) :
    writtenInExtChartAt I I x (chartAt H x) y = y := by simp_all only [mfld_simps]
Identity Property of Local Chart Representation in Extended Charts
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ and any $y \in E$ in the target of the extended chart at $x$, the local representation of the chart $\text{chartAt}_H(x)$ in the extended charts satisfies $\text{writtenInExtChartAt}_I^I(x, \text{chartAt}_H(x))(y) = y$.
writtenInExtChartAt_chartAt_symm theorem
{x : M} {y : E} (h : y ∈ (extChartAt I x).target) : writtenInExtChartAt I I (chartAt H x x) (chartAt H x).symm y = y
Full source
theorem writtenInExtChartAt_chartAt_symm {x : M} {y : E} (h : y ∈ (extChartAt I x).target) :
    writtenInExtChartAt I I (chartAt H x x) (chartAt H x).symm y = y := by
  simp_all only [mfld_simps]
Identity Property of Inverse Chart Representation in Extended Charts
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ and any $y \in E$ in the target of the extended chart at $x$, the local representation of the inverse chart $\text{chartAt}_H(x)^{-1}$ in the extended charts satisfies: \[ \text{writtenInExtChartAt}_I^I(\text{chartAt}_H(x)(x), \text{chartAt}_H(x)^{-1})(y) = y. \]
writtenInExtChartAt_extChartAt theorem
{x : M} {y : E} (h : y ∈ (extChartAt I x).target) : writtenInExtChartAt I 𝓘(𝕜, E) x (extChartAt I x) y = y
Full source
theorem writtenInExtChartAt_extChartAt {x : M} {y : E} (h : y ∈ (extChartAt I x).target) :
    writtenInExtChartAt I 𝓘(𝕜, E) x (extChartAt I x) y = y := by
  simp_all only [mfld_simps]
Identity Property of Extended Chart Representation in Itself
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$ and any $y \in E$ in the target of the extended chart at $x$, the local representation of the extended chart $\text{extChartAt}_I(x)$ in itself satisfies $\text{writtenInExtChartAt}_I^{\mathcal{I}(\mathbb{K}, E)}(x, \text{extChartAt}_I(x))(y) = y$.
writtenInExtChartAt_extChartAt_symm theorem
{x : M} {y : E} (h : y ∈ (extChartAt I x).target) : writtenInExtChartAt 𝓘(𝕜, E) I (extChartAt I x x) (extChartAt I x).symm y = y
Full source
theorem writtenInExtChartAt_extChartAt_symm {x : M} {y : E} (h : y ∈ (extChartAt I x).target) :
    writtenInExtChartAt 𝓘(𝕜, E) I (extChartAt I x x) (extChartAt I x).symm y = y := by
  simp_all only [mfld_simps]
Identity Property of Extended Chart Composition in Model Vector Space
Informal description
For any point $x$ in a manifold $M$ modeled on $(E, H)$, and any point $y$ in the target of the extended chart $\text{extChartAt}_I(x)$, the composition of the extended chart at $x$ with its inverse, when written in the extended charts, equals the identity on $y$. More precisely, if $y$ belongs to the target of $\text{extChartAt}_I(x)$, then: \[ \text{writtenInExtChartAt}_{\mathcal{I}(\mathbb{K}, E)}^I \left( \text{extChartAt}_I(x)(x), (\text{extChartAt}_I(x))^{-1} \right)(y) = y. \] Here, $\mathcal{I}(\mathbb{K}, E)$ denotes the trivial model with corners on $E$.
extChartAt_self_eq theorem
{x : H} : ⇑(extChartAt I x) = I
Full source
theorem extChartAt_self_eq {x : H} : ⇑(extChartAt I x) = I :=
  rfl
Extended Chart Coincides with Model Embedding on Model Space
Informal description
For any point $x$ in the model space $H$, the extended chart $\text{extChartAt}_I(x)$ coincides with the model embedding $I : H \to E$ as functions.
extChartAt_self_apply theorem
{x y : H} : extChartAt I x y = I y
Full source
theorem extChartAt_self_apply {x y : H} : extChartAt I x y = I y :=
  rfl
Extended Chart at a Point in Model Space Equals Model Embedding
Informal description
For any points $x, y$ in the model space $H$, the extended chart at $x$ evaluated at $y$ equals the model embedding $I$ evaluated at $y$, i.e., $\text{extChartAt}_I(x)(y) = I(y)$.
extChartAt_model_space_eq_id theorem
(x : E) : extChartAt 𝓘(𝕜, E) x = PartialEquiv.refl E
Full source
/-- In the case of the manifold structure on a vector space, the extended charts are just the
identity. -/
theorem extChartAt_model_space_eq_id (x : E) : extChartAt 𝓘(𝕜, E) x = PartialEquiv.refl E := by
  simp only [mfld_simps]
Extended Chart as Identity in Model Space
Informal description
For any point $x$ in a normed vector space $E$ over a nontrivially normed field $\mathbb{K}$, the extended chart at $x$ with respect to the trivial model with corners structure $\mathcal{I}(\mathbb{K}, E)$ is equal to the identity partial equivalence on $E$.
ext_chart_model_space_apply theorem
{x y : E} : extChartAt 𝓘(𝕜, E) x y = y
Full source
theorem ext_chart_model_space_apply {x y : E} : extChartAt 𝓘(𝕜, E) x y = y :=
  rfl
Extended Chart on Model Space Acts as Identity: $\text{extChartAt}_{\mathcal{I}(\mathbb{K}, E)}(x)(y) = y$
Informal description
For any points $x, y$ in the model vector space $E$ of a manifold with the trivial model with corners structure $\mathcal{I}(\mathbb{K}, E)$, the extended chart $\text{extChartAt}_{\mathcal{I}(\mathbb{K}, E)}(x)$ evaluated at $y$ is equal to $y$.
extChartAt_prod theorem
(x : M × M') : extChartAt (I.prod I') x = (extChartAt I x.1).prod (extChartAt I' x.2)
Full source
theorem extChartAt_prod (x : M × M') :
    extChartAt (I.prod I') x = (extChartAt I x.1).prod (extChartAt I' x.2) := by
  simp only [mfld_simps]
  -- Porting note: `simp` can't use `PartialEquiv.prod_trans` here because of a type
  -- synonym
  rw [PartialEquiv.prod_trans]
Product of Extended Charts Equals Extended Chart of Product
Informal description
For any point $x = (x_1, x_2)$ in the product manifold $M \times M'$ modeled on $(E \times E', H \times H')$, the extended chart at $x$ is equal to the product of the extended charts at $x_1$ in $M$ and $x_2$ in $M'$. More precisely, if $I$ and $I'$ are models with corners for $M$ and $M'$ respectively, then: \[ \text{extChartAt}_{I \times I'}(x_1, x_2) = \text{extChartAt}_I(x_1) \times \text{extChartAt}_{I'}(x_2) \] where the product of partial equivalences is defined componentwise.
extChartAt_comp theorem
[ChartedSpace H H'] (x : M') : (letI := ChartedSpace.comp H H' M'; extChartAt I x) = (chartAt H' x).toPartialEquiv ≫ extChartAt I (chartAt H' x x)
Full source
theorem extChartAt_comp [ChartedSpace H H'] (x : M') :
    (letI := ChartedSpace.comp H H' M'; extChartAt I x) =
      (chartAt H' x).toPartialEquiv ≫ extChartAt I (chartAt H' x x) :=
  PartialEquiv.trans_assoc ..
Composition of Extended Charts in a Charted Space
Informal description
Let \( M' \) be a manifold with a charted space structure over \( H' \), and let \( x \in M' \). The extended chart at \( x \) in the composition of charted spaces \( H \) and \( H' \) is equal to the composition of the chart at \( x \) (as a partial equivalence) with the extended chart at the image of \( x \) under the chart at \( x \). More precisely, under the composition charted space structure \( H \circ H' \), the extended chart \( \text{extChartAt}_I(x) \) is given by: \[ \text{extChartAt}_I(x) = \text{chartAt}_{H'}(x) \circ \text{extChartAt}_I(\text{chartAt}_{H'}(x)(x)) \] where \( \circ \) denotes the composition of partial equivalences.
writtenInExtChartAt_chartAt_comp theorem
[ChartedSpace H H'] (x : M') {y} (hy : y ∈ letI := ChartedSpace.comp H H' M'; (extChartAt I x).target) : (letI := ChartedSpace.comp H H' M'; writtenInExtChartAt I I x (chartAt H' x) y) = y
Full source
theorem writtenInExtChartAt_chartAt_comp [ChartedSpace H H'] (x : M') {y}
    (hy : y ∈ letI := ChartedSpace.comp H H' M'; (extChartAt I x).target) :
    (letI := ChartedSpace.comp H H' M'; writtenInExtChartAt I I x (chartAt H' x) y) = y := by
  letI := ChartedSpace.comp H H' M'
  simp_all only [mfld_simps, chartAt_comp]
Identity Property of Local Representation in Extended Charts
Informal description
Let \( M' \) be a manifold with a charted space structure over \( H' \), and let \( x \in M' \). For any point \( y \) in the target of the extended chart \( \text{extChartAt}_I(x) \) (under the composition charted space structure \( H \circ H' \)), the local representation of the chart \( \text{chartAt}_{H'}(x) \) in the extended charts satisfies: \[ \text{writtenInExtChartAt}_I^I(x, \text{chartAt}_{H'}(x))(y) = y. \]
writtenInExtChartAt_chartAt_symm_comp theorem
[ChartedSpace H H'] (x : M') {y} (hy : y ∈ letI := ChartedSpace.comp H H' M'; (extChartAt I x).target) : (letI := ChartedSpace.comp H H' M' writtenInExtChartAt I I (chartAt H' x x) (chartAt H' x).symm y) = y
Full source
theorem writtenInExtChartAt_chartAt_symm_comp [ChartedSpace H H'] (x : M') {y}
    (hy : y ∈ letI := ChartedSpace.comp H H' M'; (extChartAt I x).target) :
    ( letI := ChartedSpace.comp H H' M'
      writtenInExtChartAt I I (chartAt H' x x) (chartAt H' x).symm y) = y := by
  letI := ChartedSpace.comp H H' M'
  simp_all only [mfld_simps, chartAt_comp]
Local representation of inverse chart in extended charts is identity
Informal description
Let \( M' \) be a manifold with a charted space structure over \( H' \), and let \( x \in M' \). For any point \( y \) in the target of the extended chart \( \text{extChartAt}_I(x) \) (under the composition charted space structure \( H \circ H' \)), the local representation of the inverse chart map \( \text{chartAt}_{H'}(x)^{-1} \) in the extended charts satisfies: \[ \text{writtenInExtChartAt}_I^I(\text{chartAt}_{H'}(x)(x), \text{chartAt}_{H'}(x)^{-1})(y) = y. \]
Manifold.locallyCompact_of_finiteDimensional theorem
(I : ModelWithCorners 𝕜 E H) [LocallyCompactSpace 𝕜] [FiniteDimensional 𝕜 E] : LocallyCompactSpace M
Full source
/-- A finite-dimensional manifold modelled on a locally compact field
(such as ℝ, ℂ or the `p`-adic numbers) is locally compact. -/
lemma Manifold.locallyCompact_of_finiteDimensional
    (I : ModelWithCorners 𝕜 E H) [LocallyCompactSpace 𝕜] [FiniteDimensional 𝕜 E] :
    LocallyCompactSpace M := by
  have : ProperSpace E := FiniteDimensional.proper 𝕜 E
  have : LocallyCompactSpace H := I.locallyCompactSpace
  exact ChartedSpace.locallyCompactSpace H M
Local compactness of finite-dimensional manifolds over locally compact fields
Informal description
Let $M$ be a smooth manifold modelled on a finite-dimensional vector space $E$ over a locally compact field $\mathbb{K}$ (such as $\mathbb{R}$, $\mathbb{C}$, or the $p$-adic numbers), with model space $H$ and model with corners $I : H \to E$. If $\mathbb{K}$ is locally compact and $E$ is finite-dimensional over $\mathbb{K}$, then $M$ is locally compact.
LocallyCompactSpace.of_locallyCompact_manifold theorem
(I : ModelWithCorners 𝕜 E H) [h : Nonempty M] [LocallyCompactSpace M] : LocallyCompactSpace E
Full source
/-- A locally compact manifold must be modelled on a locally compact space. -/
lemma LocallyCompactSpace.of_locallyCompact_manifold (I : ModelWithCorners 𝕜 E H)
    [h : Nonempty M] [LocallyCompactSpace M] :
    LocallyCompactSpace E := by
  rcases h with ⟨x⟩
  obtain ⟨y, hy⟩ := interior_extChartAt_target_nonempty I x
  have h'y : y ∈ (extChartAt I x).target := interior_subset hy
  obtain ⟨s, hmem, hss, hcom⟩ :=
    LocallyCompactSpace.local_compact_nhds ((extChartAt I x).symm y) (extChartAt I x).source
      ((isOpen_extChartAt_source x).mem_nhds ((extChartAt I x).map_target h'y))
  have : IsCompact <| (extChartAt I x) '' s :=
    hcom.image_of_continuousOn <| (continuousOn_extChartAt x).mono hss
  apply this.locallyCompactSpace_of_mem_nhds_of_addGroup (x := y)
  rw [← (extChartAt I x).right_inv h'y]
  apply extChartAt_image_nhd_mem_nhds_of_mem_interior_range
    (PartialEquiv.map_target (extChartAt I x) h'y) _ hmem
  simp only [(extChartAt I x).right_inv h'y]
  exact interior_mono (extChartAt_target_subset_range x) hy
Local Compactness of Model Space Implies Local Compactness of Manifold
Informal description
Let $M$ be a nonempty smooth manifold with corners modeled on $(E, H)$ with model with corners $I : H \to E$. If $M$ is locally compact, then the model vector space $E$ is also locally compact.
FiniteDimensional.of_locallyCompact_manifold theorem
[CompleteSpace 𝕜] (I : ModelWithCorners 𝕜 E H) [Nonempty M] [LocallyCompactSpace M] : FiniteDimensional 𝕜 E
Full source
/-- Riesz's theorem applied to manifolds: a locally compact manifolds must be modelled on a
finite-dimensional space. This is the converse to `Manifold.locallyCompact_of_finiteDimensional`. -/
theorem FiniteDimensional.of_locallyCompact_manifold
    [CompleteSpace 𝕜] (I : ModelWithCorners 𝕜 E H) [Nonempty M] [LocallyCompactSpace M] :
    FiniteDimensional 𝕜 E := by
  have := LocallyCompactSpace.of_locallyCompact_manifold M I
  exact FiniteDimensional.of_locallyCompactSpace 𝕜
Riesz's Theorem for Manifolds: Locally Compact Manifolds are Finite-Dimensional
Informal description
Let $M$ be a nonempty smooth manifold with corners modeled on $(E, H)$ with model with corners $I : H \to E$, where $\mathbb{K}$ is a complete normed field. If $M$ is locally compact, then the model vector space $E$ is finite-dimensional over $\mathbb{K}$.