Informal description
Let $\alpha$ be a type with decidable equality, and let $\beta : \mathrm{ULift}\,\alpha \to \text{Type}$ be a type family. For any function $f : \forall a : \alpha, \beta (\mathrm{up}\,a)$, any $a : \alpha$, and any $x : \beta (\mathrm{up}\,a)$, the following equality holds:
\[
\mathrm{ULift.rec}\,(\text{update}\,f\,a\,x) = \text{update}\,(\mathrm{ULift.rec}\,f)\,(\mathrm{up}\,a)\,x
\]
Here, $\mathrm{ULift.rec}$ is the recursor for $\mathrm{ULift}$, and $\text{update}$ is the function update operation.