Informal description
Let $\alpha$ and $\beta$ be types with decidable equality, and let $\alpha \oplus \beta$ also have decidable equality. For any function $f : \alpha \oplus \beta \to \gamma$, any elements $i, j \in \alpha$, and any value $x \in \gamma$, the updated function $\text{update } f \, (\text{inl } i) \, x$ evaluated at $\text{inl } j$ is equal to the function $\text{update } (f \circ \text{inl}) \, i \, x$ evaluated at $j$.
In other words:
\[
\text{update } f \, (\text{inl } i) \, x \, (\text{inl } j) = \text{update } (f \circ \text{inl}) \, i \, x \, j.
\]