Module docstring
{"# fintype instances for sigma types "}
{"# fintype instances for sigma types "}
Set.biUnion_finsetSigma_univ
theorem
(s : Finset ι) (f : Sigma κ → Set α) : ⋃ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij = ⋃ i ∈ s, ⋃ j, f ⟨i, j⟩
lemma Set.biUnion_finsetSigma_univ (s : Finset ι) (f : Sigma κ → Set α) :
⋃ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij = ⋃ i ∈ s, ⋃ j, f ⟨i, j⟩ := by aesop
Set.biUnion_finsetSigma_univ'
theorem
(s : Finset ι) (f : Π i, κ i → Set α) : ⋃ i ∈ s, ⋃ j, f i j = ⋃ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij.1 ij.2
lemma Set.biUnion_finsetSigma_univ' (s : Finset ι) (f : Π i, κ i → Set α) :
⋃ i ∈ s, ⋃ j, f i j = ⋃ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij.1 ij.2 := by aesop
Set.biInter_finsetSigma_univ
theorem
(s : Finset ι) (f : Sigma κ → Set α) : ⋂ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij = ⋂ i ∈ s, ⋂ j, f ⟨i, j⟩
lemma Set.biInter_finsetSigma_univ (s : Finset ι) (f : Sigma κ → Set α) :
⋂ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij = ⋂ i ∈ s, ⋂ j, f ⟨i, j⟩ := by aesop
Set.biInter_finsetSigma_univ'
theorem
(s : Finset ι) (f : Π i, κ i → Set α) : ⋂ i ∈ s, ⋂ j, f i j = ⋂ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij.1 ij.2
lemma Set.biInter_finsetSigma_univ' (s : Finset ι) (f : Π i, κ i → Set α) :
⋂ i ∈ s, ⋂ j, f i j = ⋂ ij ∈ s.sigma fun _ ↦ Finset.univ, f ij.1 ij.2 := by aesop
Sigma.instFintype
instance
: Fintype (Σ i, κ i)
instance Sigma.instFintype : Fintype (Σ i, κ i) := ⟨univ.sigma fun _ ↦ univ, by simp⟩
PSigma.instFintype
instance
: Fintype (Σ' i, κ i)
instance PSigma.instFintype : Fintype (Σ' i, κ i) := .ofEquiv _ (Equiv.psigmaEquivSigma _).symm
Finset.univ_sigma_univ
theorem
: univ.sigma (fun _ ↦ univ) = (univ : Finset (Σ i, κ i))