Module docstring
{"# Lemmas about Finite and Sets
In this file we prove two lemmas about Finite and Sets.
Tags
finiteness, finite sets "}
{"# Lemmas about Finite and Sets
In this file we prove two lemmas about Finite and Sets.
finiteness, finite sets "}
Finite.Set.finite_of_finite_image
theorem
(s : Set α) {f : α → β} (h : s.InjOn f) [Finite (f '' s)] : Finite s
theorem Finite.Set.finite_of_finite_image (s : Set α) {f : α → β} (h : s.InjOn f)
[Finite (f '' s)] : Finite s :=
Finite.of_equiv _ (Equiv.ofBijective _ h.bijOn_image.bijective).symm
Finite.of_injective_finite_range
theorem
{f : ι → α} (hf : Function.Injective f) [Finite (range f)] : Finite ι
theorem Finite.of_injective_finite_range {f : ι → α} (hf : Function.Injective f)
[Finite (range f)] : Finite ι :=
Finite.of_injective (Set.rangeFactorization f) (hf.codRestrict _)