Module docstring
{"# Some lemmas on extended non-negative reals
These are some lemmas split off from ENNReal.Basic because they need a lot more imports.
They are probably good targets for further cleanup or moves.
"}
{"# Some lemmas on extended non-negative reals
These are some lemmas split off from ENNReal.Basic because they need a lot more imports.
They are probably good targets for further cleanup or moves.
"}
ENNReal.coe_indicator
theorem
{α} (s : Set α) (f : α → ℝ≥0) (a : α) : ((s.indicator f a : ℝ≥0) : ℝ≥0∞) = s.indicator (fun x => ↑(f x)) a
@[simp, norm_cast]
theorem coe_indicator {α} (s : Set α) (f : α → ℝ≥0) (a : α) :
((s.indicator f a : ℝ≥0) : ℝ≥0∞) = s.indicator (fun x => ↑(f x)) a :=
(ofNNRealHom : ℝ≥0ℝ≥0 →+ ℝ≥0∞).map_indicator _ _ _
ENNReal.coe_finset_sup
theorem
{s : Finset α} {f : α → ℝ≥0} : ↑(s.sup f) = s.sup fun x => (f x : ℝ≥0∞)
@[simp, norm_cast]
theorem coe_finset_sup {s : Finset α} {f : α → ℝ≥0} : ↑(s.sup f) = s.sup fun x => (f x : ℝ≥0∞) :=
Finset.comp_sup_eq_sup_comp_of_is_total _ coe_mono rfl