Module docstring
{"# Booleans and set operations
This file contains two trivial lemmas about Bool, Set.univ, and Set.range.
"}
{"# Booleans and set operations
This file contains two trivial lemmas about Bool, Set.univ, and Set.range.
"}
Bool.univ_eq
theorem
: (univ : Set Bool) = { false, true }
@[simp]
theorem univ_eq : (univ : Set Bool) = {false, true} :=
(eq_univ_of_forall Bool.dichotomy).symm
Bool.range_eq
theorem
{α : Type*} (f : Bool → α) : range f = {f false, f true}
@[simp]
theorem range_eq {α : Type*} (f : Bool → α) : range f = {f false, f true} := by
rw [← image_univ, univ_eq, image_pair]
Bool.compl_singleton
theorem
(b : Bool) : ({ b }ᶜ : Set Bool) = {!b}