Module docstring
{"# The left/right unitor equivalences 1 × C ≌ C and C × 1 ≌ C.
"}
{"# The left/right unitor equivalences 1 × C ≌ C and C × 1 ≌ C.
"}
CategoryTheory.prod.leftUnitor
definition
: Discrete (PUnit : Type w) × C ⥤ C
/-- The left unitor functor `1 × C ⥤ C` -/
@[simps]
def leftUnitor : DiscreteDiscrete (PUnit : Type w) × CDiscrete (PUnit : Type w) × C ⥤ C where
obj X := X.2
map f := f.2
CategoryTheory.prod.rightUnitor
definition
: C × Discrete (PUnit : Type w) ⥤ C
/-- The right unitor functor `C × 1 ⥤ C` -/
@[simps]
def rightUnitor : C × Discrete (PUnit : Type w)C × Discrete (PUnit : Type w) ⥤ C where
obj X := X.1
map f := f.1
CategoryTheory.prod.leftInverseUnitor
definition
: C ⥤ Discrete (PUnit : Type w) × C
/-- The left inverse unitor `C ⥤ 1 × C` -/
@[simps]
def leftInverseUnitor : C ⥤ Discrete (PUnit : Type w) × C where
obj X := ⟨⟨PUnit.unit⟩, X⟩
map f := ⟨𝟙 _, f⟩
CategoryTheory.prod.rightInverseUnitor
definition
: C ⥤ C × Discrete (PUnit : Type w)
/-- The right inverse unitor `C ⥤ C × 1` -/
@[simps]
def rightInverseUnitor : C ⥤ C × Discrete (PUnit : Type w) where
obj X := ⟨X, ⟨PUnit.unit⟩⟩
map f := ⟨f, 𝟙 _⟩
CategoryTheory.prod.leftUnitorEquivalence
definition
: Discrete (PUnit : Type w) × C ≌ C
/-- The equivalence of categories expressing left unity of products of categories. -/
@[simps]
def leftUnitorEquivalence : DiscreteDiscrete (PUnit : Type w) × CDiscrete (PUnit : Type w) × C ≌ C where
functor := leftUnitor C
inverse := leftInverseUnitor C
unitIso := Iso.refl _
counitIso := Iso.refl _
CategoryTheory.prod.rightUnitorEquivalence
definition
: C × Discrete (PUnit : Type w) ≌ C
/-- The equivalence of categories expressing right unity of products of categories. -/
@[simps]
def rightUnitorEquivalence : C × Discrete (PUnit : Type w)C × Discrete (PUnit : Type w) ≌ C where
functor := rightUnitor C
inverse := rightInverseUnitor C
unitIso := Iso.refl _
counitIso := Iso.refl _
CategoryTheory.prod.leftUnitor_isEquivalence
instance
: (leftUnitor C).IsEquivalence
instance leftUnitor_isEquivalence : (leftUnitor C).IsEquivalence :=
(leftUnitorEquivalence C).isEquivalence_functor
CategoryTheory.prod.rightUnitor_isEquivalence
instance
: (rightUnitor C).IsEquivalence
instance rightUnitor_isEquivalence : (rightUnitor C).IsEquivalence :=
(rightUnitorEquivalence C).isEquivalence_functor