Module docstring
{"# Conjugate morphisms by isomorphisms
We define
CategoryTheory.Iso.homCongr : (X ≅ X₁) → (Y ≅ Y₁) → (X ⟶ Y) ≃ (X₁ ⟶ Y₁),
cf. Equiv.arrowCongr,
and CategoryTheory.Iso.isoCongr : (f : X₁ ≅ X₂) → (g : Y₁ ≅ Y₂) → (X₁ ≅ Y₁) ≃ (X₂ ≅ Y₂).
As corollaries, an isomorphism α : X ≅ Y defines
- a monoid isomorphism
CategoryTheory.Iso.conj : End X ≃* End Y by α.conj f = α.inv ≫ f ≫ α.hom;
- a group isomorphism CategoryTheory.Iso.conjAut : Aut X ≃* Aut Y by
α.conjAut f = α.symm ≪≫ f ≪≫ α
which can be found in CategoryTheory.Conj.
"}