doc-next-gen

Mathlib.Analysis.Normed.Module.Span

Module docstring

{"# The span of a single vector

The equivalence of π•œ and π•œ β€’ x for x β‰  0 are defined as continuous linear equivalence and isometry.

Main definitions

  • ContinuousLinearEquiv.toSpanNonzeroSingleton: The continuous linear equivalence between π•œ and π•œ β€’ x for x β‰  0.
  • LinearIsometryEquiv.toSpanUnitSingleton: For β€–xβ€– = 1 the continuous linear equivalence is a linear isometry equivalence.

"}

LinearMap.toSpanSingleton_homothety theorem
(x : E) (c : π•œ) : β€–LinearMap.toSpanSingleton π•œ E x cβ€– = β€–xβ€– * β€–cβ€–
Full source
theorem toSpanSingleton_homothety (x : E) (c : π•œ) :
    β€–LinearMap.toSpanSingleton π•œ E x cβ€– = β€–xβ€– * β€–cβ€– := by
  rw [mul_comm]
  exact norm_smul _ _
Homothety Property of Scalar Multiplication: $\|c \cdot x\| = \|x\| \cdot \|c\|$
Informal description
For any vector $x$ in a normed space $E$ over a normed division ring $\mathbb{K}$ and any scalar $c \in \mathbb{K}$, the norm of the vector obtained by scaling $x$ by $c$ (i.e., $c \cdot x$) is equal to the product of the norms of $x$ and $c$, i.e., $\|c \cdot x\| = \|x\| \cdot \|c\|$.
LinearEquiv.toSpanNonzeroSingleton_homothety theorem
(x : E) (h : x β‰  0) (c : π•œ) : β€–LinearEquiv.toSpanNonzeroSingleton π•œ E x h cβ€– = β€–xβ€– * β€–cβ€–
Full source
theorem _root_.LinearEquiv.toSpanNonzeroSingleton_homothety (x : E) (h : x β‰  0) (c : π•œ) :
    β€–LinearEquiv.toSpanNonzeroSingleton π•œ E x h cβ€– = β€–xβ€– * β€–cβ€– :=
  LinearMap.toSpanSingleton_homothety _ _ _
Homothety Property of Linear Equivalence to Span of Nonzero Vector: $\|L(c)\| = \|x\| \cdot \|c\|$
Informal description
For any nonzero vector $x$ in a normed space $E$ over a normed division ring $\mathbb{K}$ and any scalar $c \in \mathbb{K}$, the norm of the image of $c$ under the linear equivalence from $\mathbb{K}$ to the span of $x$ is equal to the product of the norms of $x$ and $c$, i.e., $\|L(c)\| = \|x\| \cdot \|c\|$, where $L \colon \mathbb{K} \to \mathbb{K} \cdot x$ is the linear equivalence map.
ContinuousLinearEquiv.toSpanNonzeroSingleton definition
(x : E) (h : x β‰  0) : π•œ ≃L[π•œ] π•œ βˆ™ x
Full source
/-- Given a nonzero element `x` of a normed space `E₁` over a field `π•œ`, the natural
    continuous linear equivalence from `E₁` to the span of `x`. -/
noncomputable def toSpanNonzeroSingleton (x : E) (h : x β‰  0) : π•œ ≃L[π•œ] π•œ βˆ™ x :=
  ofHomothety (LinearEquiv.toSpanNonzeroSingleton π•œ E x h) β€–xβ€– (norm_pos_iff.mpr h)
    (LinearEquiv.toSpanNonzeroSingleton_homothety π•œ x h)
Continuous linear equivalence between a field and the span of a nonzero vector
Informal description
Given a nonzero element $x$ in a normed space $E$ over a field $\mathbb{K}$, the natural continuous linear equivalence from $\mathbb{K}$ to the span of $x$ (denoted $\mathbb{K} \cdot x$) is defined. This equivalence is constructed using a homothety condition, ensuring that for any scalar $c \in \mathbb{K}$, the norm of the image $c \cdot x$ is equal to $\|x\| \cdot \|c\|$.
ContinuousLinearEquiv.coord definition
(x : E) (h : x β‰  0) : (π•œ βˆ™ x) β†’L[π•œ] π•œ
Full source
/-- Given a nonzero element `x` of a normed space `E₁` over a field `π•œ`, the natural continuous
    linear map from the span of `x` to `π•œ`. -/
noncomputable def coord (x : E) (h : x β‰  0) : (π•œ βˆ™ x) β†’L[π•œ] π•œ :=
  (toSpanNonzeroSingleton π•œ x h).symm
Coordinate map from the span of a nonzero vector to the base field
Informal description
Given a nonzero element $x$ in a normed space $E$ over a field $\mathbb{K}$, the continuous linear map $\text{coord}_{\mathbb{K}, x, h}$ from the span of $x$ (denoted $\mathbb{K} \cdot x$) back to $\mathbb{K}$ is defined as the inverse of the natural continuous linear equivalence between $\mathbb{K}$ and $\mathbb{K} \cdot x$.
ContinuousLinearEquiv.coe_toSpanNonzeroSingleton_symm theorem
{x : E} (h : x β‰  0) : ⇑(toSpanNonzeroSingleton π•œ x h).symm = coord π•œ x h
Full source
@[simp]
theorem coe_toSpanNonzeroSingleton_symm {x : E} (h : x β‰  0) :
    ⇑(toSpanNonzeroSingleton π•œ x h).symm = coord π•œ x h :=
  rfl
Inverse of Span Equivalence Equals Coordinate Map for Nonzero Vectors
Informal description
For any nonzero element $x$ in a normed space $E$ over a field $\mathbb{K}$, the inverse of the continuous linear equivalence $\text{toSpanNonzeroSingleton}_{\mathbb{K}, x, h}$ from $\mathbb{K}$ to the span of $x$ (denoted $\mathbb{K} \cdot x$) is equal to the coordinate map $\text{coord}_{\mathbb{K}, x, h}$ from $\mathbb{K} \cdot x$ back to $\mathbb{K}$.
ContinuousLinearEquiv.coord_toSpanNonzeroSingleton theorem
{x : E} (h : x β‰  0) (c : π•œ) : coord π•œ x h (toSpanNonzeroSingleton π•œ x h c) = c
Full source
@[simp]
theorem coord_toSpanNonzeroSingleton {x : E} (h : x β‰  0) (c : π•œ) :
    coord π•œ x h (toSpanNonzeroSingleton π•œ x h c) = c :=
  (toSpanNonzeroSingleton π•œ x h).symm_apply_apply c
Inverse Property of Coordinate Map and Span Equivalence
Informal description
Let $\mathbb{K}$ be a normed field and $E$ be a normed space over $\mathbb{K}$. For any nonzero vector $x \in E$ and any scalar $c \in \mathbb{K}$, the coordinate map $\text{coord}_{\mathbb{K}, x, h}$ evaluated at the image of $c$ under the continuous linear equivalence $\text{toSpanNonzeroSingleton}_{\mathbb{K}, x, h}$ equals $c$, i.e., \[ \text{coord}_{\mathbb{K}, x, h}(\text{toSpanNonzeroSingleton}_{\mathbb{K}, x, h}(c)) = c. \]
ContinuousLinearEquiv.toSpanNonzeroSingleton_coord theorem
{x : E} (h : x β‰  0) (y : π•œ βˆ™ x) : toSpanNonzeroSingleton π•œ x h (coord π•œ x h y) = y
Full source
@[simp]
theorem toSpanNonzeroSingleton_coord {x : E} (h : x β‰  0) (y : π•œ βˆ™ x) :
    toSpanNonzeroSingleton π•œ x h (coord π•œ x h y) = y :=
  (toSpanNonzeroSingleton π•œ x h).apply_symm_apply y
Span Equivalence and Coordinate Map are Inverses for Nonzero Vectors
Informal description
Let $\mathbb{K}$ be a normed field and $E$ be a normed space over $\mathbb{K}$. For any nonzero vector $x \in E$ (i.e., $x \neq 0$) and any element $y$ in the span of $x$ (i.e., $y \in \mathbb{K} \cdot x$), applying the continuous linear equivalence $\text{toSpanNonzeroSingleton}_{\mathbb{K}, x, h}$ to the coordinate $\text{coord}_{\mathbb{K}, x, h}(y)$ of $y$ recovers $y$ itself. In other words, the composition of the coordinate map with the span equivalence is the identity on $\mathbb{K} \cdot x$.
ContinuousLinearEquiv.coord_self theorem
(x : E) (h : x β‰  0) : (coord π•œ x h) (⟨x, Submodule.mem_span_singleton_self x⟩ : π•œ βˆ™ x) = 1
Full source
@[simp]
theorem coord_self (x : E) (h : x β‰  0) :
    (coord π•œ x h) (⟨x, Submodule.mem_span_singleton_self x⟩ : π•œ βˆ™ x) = 1 :=
  LinearEquiv.coord_self π•œ E x h
Coordinate Map Evaluates to One on the Spanning Vector
Informal description
Let $E$ be a normed space over a normed field $\mathbb{K}$, and let $x \in E$ be a nonzero vector. The coordinate map $\text{coord}_{\mathbb{K}, x, h}$ evaluated at the vector $x$ (considered as an element of the span $\mathbb{K} \cdot x$) is equal to $1$, i.e., \[ \text{coord}_{\mathbb{K}, x, h}(x) = 1. \]
LinearIsometryEquiv.toSpanUnitSingleton definition
(x : E) (hx : β€–xβ€– = 1) : π•œ ≃ₗᡒ[π•œ] π•œ βˆ™ x
Full source
/-- Given a unit element `x` of a normed space `E` over a field `π•œ`, the natural
    linear isometry equivalence from `E` to the span of `x`. -/
noncomputable def toSpanUnitSingleton (x : E) (hx : β€–xβ€– = 1) :
    π•œ ≃ₗᡒ[π•œ] π•œ βˆ™ x where
  toLinearEquiv := LinearEquiv.toSpanNonzeroSingleton π•œ E x (by aesop)
  norm_map' := by
    intro
    rw [LinearEquiv.toSpanNonzeroSingleton_homothety, hx, one_mul]
Linear isometric equivalence between a field and the span of a unit vector
Informal description
Given a unit vector $x$ in a normed space $E$ over a field $\mathbb{K}$ (i.e., $\|x\| = 1$), the map $\mathbb{K} \to \mathbb{K} \cdot x$ defined by $r \mapsto r \cdot x$ is a linear isometric equivalence between $\mathbb{K}$ and the span of $x$. This means it is a bijective linear map that preserves the norm, i.e., $\|r \cdot x\| = |r| \cdot \|x\| = |r|$ for all $r \in \mathbb{K}$.
LinearIsometryEquiv.toSpanUnitSingleton_apply theorem
(x : E) (hx : β€–xβ€– = 1) (r : π•œ) : toSpanUnitSingleton x hx r = (⟨r β€’ x, by aesop⟩ : π•œ βˆ™ x)
Full source
@[simp] theorem toSpanUnitSingleton_apply (x : E) (hx : β€–xβ€– = 1) (r : π•œ) :
    toSpanUnitSingleton x hx r = (⟨r β€’ x, by aesop⟩ : π•œ βˆ™ x) := by
  rfl
Action of Linear Isometric Equivalence on Scalar Multiplication: $\text{toSpanUnitSingleton}(x, hx)(r) = r \cdot x$
Informal description
For a unit vector $x$ in a normed space $E$ over a field $\mathbb{K}$ (i.e., $\|x\| = 1$), the linear isometric equivalence $\mathbb{K} \simeq \mathbb{K} \cdot x$ maps any scalar $r \in \mathbb{K}$ to the vector $r \cdot x$ in the span of $x$. That is, the equivalence $\text{toSpanUnitSingleton}(x, hx)$ satisfies $\text{toSpanUnitSingleton}(x, hx)(r) = r \cdot x$ for all $r \in \mathbb{K}$.