Module docstring
{"# Completion of a normed group
In this file we prove that the completion of a (semi)normed group is a normed group.
Tags
normed group, completion "}
{"# Completion of a normed group
In this file we prove that the completion of a (semi)normed group is a normed group.
normed group, completion "}
UniformSpace.Completion.instNorm
      instance
     [UniformSpace E] [Norm E] : Norm (Completion E)
        instance [UniformSpace E] [Norm E] : Norm (Completion E) where
  norm := Completion.extension Norm.norm
        UniformSpace.Completion.norm_coe
      theorem
     {E} [SeminormedAddCommGroup E] (x : E) : ‖(x : Completion E)‖ = ‖x‖
        @[simp]
theorem norm_coe {E} [SeminormedAddCommGroup E] (x : E) : ‖(x : Completion E)‖ = ‖x‖ :=
  Completion.extension_coe uniformContinuous_norm x
        UniformSpace.Completion.instNormedAddCommGroup
      instance
     [SeminormedAddCommGroup E] : NormedAddCommGroup (Completion E)
        instance [SeminormedAddCommGroup E] : NormedAddCommGroup (Completion E) where
  dist_eq x y := by
    induction x, y using Completion.induction_on₂
    · refine isClosed_eq (Completion.uniformContinuous_extension₂ _).continuous ?_
      exact Continuous.comp Completion.continuous_extension continuous_sub
    · rw [← Completion.coe_sub, norm_coe, Completion.dist_eq, dist_eq_norm]
        UniformSpace.Completion.nnnorm_coe
      theorem
     {E} [SeminormedAddCommGroup E] (x : E) : ‖(x : Completion E)‖₊ = ‖x‖₊
        @[simp]
theorem nnnorm_coe {E} [SeminormedAddCommGroup E] (x : E) : ‖(x : Completion E)‖₊ = ‖x‖₊ := by
  simp [nnnorm]
        UniformSpace.Completion.enorm_coe
      theorem
     {E} [SeminormedAddCommGroup E] (x : E) : ‖(x : Completion E)‖ₑ = ‖x‖ₑ
        @[simp]
lemma enorm_coe {E} [SeminormedAddCommGroup E] (x : E) : ‖(x : Completion E)‖ₑ = ‖x‖ₑ := by
  simp [enorm]