doc-next-gen

Mathlib.Analysis.Calculus.FDeriv.RestrictScalars

Module docstring

{"# The derivative of the scalar restriction of a linear map

For detailed documentation of the Frรฉchet derivative, see the module docstring of Analysis/Calculus/FDeriv/Basic.lean.

This file contains the usual formulas (and existence assertions) for the derivative of the scalar restriction of a linear map. ","### Restricting from โ„‚ to โ„, or generally from ๐•œ' to ๐•œ

If a function is differentiable over โ„‚, then it is differentiable over โ„. In this paragraph, we give variants of this statement, in the general situation where โ„‚ and โ„ are replaced respectively by ๐•œ' and ๐•œ where ๐•œ' is a normed algebra over ๐•œ. "}

HasStrictFDerivAt.restrictScalars theorem
(h : HasStrictFDerivAt f f' x) : HasStrictFDerivAt f (f'.restrictScalars ๐•œ) x
Full source
@[fun_prop]
theorem HasStrictFDerivAt.restrictScalars (h : HasStrictFDerivAt f f' x) :
    HasStrictFDerivAt f (f'.restrictScalars ๐•œ) x :=
  .of_isLittleO h.isLittleO
Strict Frรฉchet Differentiability is Preserved Under Restriction of Scalars
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ being a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function. If $f$ has a strict Frรฉchet derivative $f' : E \toL[\mathbb{K}'] F$ at a point $x \in E$, then $f$ also has a strict Frรฉchet derivative at $x$ when considered as a map between normed spaces over $\mathbb{K}$, given by the restriction of scalars of $f'$ to $\mathbb{K}$.
HasFDerivAtFilter.restrictScalars theorem
{L} (h : HasFDerivAtFilter f f' x L) : HasFDerivAtFilter f (f'.restrictScalars ๐•œ) x L
Full source
theorem HasFDerivAtFilter.restrictScalars {L} (h : HasFDerivAtFilter f f' x L) :
    HasFDerivAtFilter f (f'.restrictScalars ๐•œ) x L :=
  .of_isLittleO h.isLittleO
Frรฉchet Derivative Preservation under Scalar Restriction
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}'$, and let $\mathbb{K}$ be a subfield of $\mathbb{K}'$ such that $\mathbb{K}'$ is a normed algebra over $\mathbb{K}$. Suppose $f : E \to F$ has a Frรฉchet derivative $f' : E \toL[\mathbb{K}'] F$ at $x \in E$ along the filter $L$. Then the scalar-restricted map $f$ also has a Frรฉchet derivative at $x$ along $L$ when viewed as a $\mathbb{K}$-linear map, given by the scalar restriction of $f'$ to $\mathbb{K}$.
HasFDerivAt.restrictScalars theorem
(h : HasFDerivAt f f' x) : HasFDerivAt f (f'.restrictScalars ๐•œ) x
Full source
@[fun_prop]
theorem HasFDerivAt.restrictScalars (h : HasFDerivAt f f' x) :
    HasFDerivAt f (f'.restrictScalars ๐•œ) x :=
  .of_isLittleO h.isLittleO
Frรฉchet Differentiability is Preserved Under Scalar Restriction
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ being a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function. If $f$ has a Frรฉchet derivative $f' : E \toL[\mathbb{K}'] F$ at a point $x \in E$, then $f$ also has a Frรฉchet derivative at $x$ when considered as a map between normed spaces over $\mathbb{K}$, given by the scalar restriction $f'.\text{restrictScalars}(\mathbb{K}) : E \toL[\mathbb{K}] F$.
HasFDerivWithinAt.restrictScalars theorem
(h : HasFDerivWithinAt f f' s x) : HasFDerivWithinAt f (f'.restrictScalars ๐•œ) s x
Full source
@[fun_prop]
theorem HasFDerivWithinAt.restrictScalars (h : HasFDerivWithinAt f f' s x) :
    HasFDerivWithinAt f (f'.restrictScalars ๐•œ) s x :=
  .of_isLittleO h.isLittleO
Scalar restriction preserves Frรฉchet differentiability within a set
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function. If $f$ has Frรฉchet derivative $f'$ at $x \in E$ within a set $s \subseteq E$ as a $\mathbb{K}'$-linear map, then $f$ also has Frรฉchet derivative given by the scalar restriction of $f'$ to $\mathbb{K}$ at $x$ within $s$.
DifferentiableAt.restrictScalars theorem
(h : DifferentiableAt ๐•œ' f x) : DifferentiableAt ๐•œ f x
Full source
@[fun_prop]
theorem DifferentiableAt.restrictScalars (h : DifferentiableAt ๐•œ' f x) : DifferentiableAt ๐•œ f x :=
  (h.hasFDerivAt.restrictScalars ๐•œ).differentiableAt
Differentiability is preserved under scalar restriction
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function. If $f$ is differentiable at a point $x \in E$ as a $\mathbb{K}'$-linear map, then $f$ is also differentiable at $x$ when considered as a $\mathbb{K}$-linear map.
DifferentiableWithinAt.restrictScalars theorem
(h : DifferentiableWithinAt ๐•œ' f s x) : DifferentiableWithinAt ๐•œ f s x
Full source
@[fun_prop]
theorem DifferentiableWithinAt.restrictScalars (h : DifferentiableWithinAt ๐•œ' f s x) :
    DifferentiableWithinAt ๐•œ f s x :=
  (h.hasFDerivWithinAt.restrictScalars ๐•œ).differentiableWithinAt
Differentiability is preserved under scalar restriction within a set
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function. If $f$ is differentiable at a point $x \in E$ within a set $s \subseteq E$ as a $\mathbb{K}'$-linear map, then $f$ is also differentiable at $x$ within $s$ when considered as a $\mathbb{K}$-linear map.
DifferentiableOn.restrictScalars theorem
(h : DifferentiableOn ๐•œ' f s) : DifferentiableOn ๐•œ f s
Full source
@[fun_prop]
theorem DifferentiableOn.restrictScalars (h : DifferentiableOn ๐•œ' f s) : DifferentiableOn ๐•œ f s :=
  fun x hx => (h x hx).restrictScalars ๐•œ
Differentiability on a set is preserved under scalar restriction
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function. If $f$ is differentiable on a set $s \subseteq E$ as a $\mathbb{K}'$-linear map, then $f$ is also differentiable on $s$ when considered as a $\mathbb{K}$-linear map.
Differentiable.restrictScalars theorem
(h : Differentiable ๐•œ' f) : Differentiable ๐•œ f
Full source
@[fun_prop]
theorem Differentiable.restrictScalars (h : Differentiable ๐•œ' f) : Differentiable ๐•œ f := fun x =>
  (h x).restrictScalars ๐•œ
Differentiability is preserved under scalar restriction
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function. If $f$ is differentiable on $E$ as a $\mathbb{K}'$-linear map, then $f$ is also differentiable on $E$ when considered as a $\mathbb{K}$-linear map.
HasFDerivWithinAt.of_restrictScalars theorem
{g' : E โ†’L[๐•œ] F} (h : HasFDerivWithinAt f g' s x) (H : f'.restrictScalars ๐•œ = g') : HasFDerivWithinAt f f' s x
Full source
@[fun_prop]
theorem HasFDerivWithinAt.of_restrictScalars {g' : E โ†’L[๐•œ] F} (h : HasFDerivWithinAt f g' s x)
    (H : f'.restrictScalars ๐•œ = g') : HasFDerivWithinAt f f' s x := by
  rw [โ† H] at h
  exact .of_isLittleO h.isLittleO
Frรฉchet Derivative via Restriction of Scalars within a Set
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\mathbb{K}'$ be a normed algebra over $\mathbb{K}$. Suppose $f : E \to F$ has a Frรฉchet derivative $g' : E \toL[\mathbb{K}] F$ at $x \in E$ within a set $s \subseteq E$. If the restriction of scalars of $f' : E \toL[\mathbb{K}'] F$ to $\mathbb{K}$ equals $g'$, then $f$ has Frรฉchet derivative $f'$ at $x$ within $s$.
hasFDerivAt_of_restrictScalars theorem
{g' : E โ†’L[๐•œ] F} (h : HasFDerivAt f g' x) (H : f'.restrictScalars ๐•œ = g') : HasFDerivAt f f' x
Full source
@[fun_prop]
theorem hasFDerivAt_of_restrictScalars {g' : E โ†’L[๐•œ] F} (h : HasFDerivAt f g' x)
    (H : f'.restrictScalars ๐•œ = g') : HasFDerivAt f f' x := by
  rw [โ† H] at h
  exact .of_isLittleO h.isLittleO
Frรฉchet Differentiability via Scalar Restriction
Informal description
Let $E$ and $F$ be normed spaces over a normed field $\mathbb{K}'$, where $\mathbb{K}'$ is a normed algebra over a subfield $\mathbb{K}$. Let $f : E \to F$ be a function and $x \in E$. Suppose $f$ has a Frรฉchet derivative $g' : E \toL[\mathbb{K}] F$ at $x$ (with respect to $\mathbb{K}$). If the restriction of scalars of $f' : E \toL[\mathbb{K}'] F$ to $\mathbb{K}$ equals $g'$, then $f$ has Frรฉchet derivative $f'$ at $x$ (with respect to $\mathbb{K}'$).
DifferentiableAt.fderiv_restrictScalars theorem
(h : DifferentiableAt ๐•œ' f x) : fderiv ๐•œ f x = (fderiv ๐•œ' f x).restrictScalars ๐•œ
Full source
theorem DifferentiableAt.fderiv_restrictScalars (h : DifferentiableAt ๐•œ' f x) :
    fderiv ๐•œ f x = (fderiv ๐•œ' f x).restrictScalars ๐•œ :=
  (h.hasFDerivAt.restrictScalars ๐•œ).fderiv
Frรฉchet Derivative Under Scalar Restriction: $\text{fderiv}_{\mathbb{K}} f x = (\text{fderiv}_{\mathbb{K}'} f x).\text{restrictScalars}(\mathbb{K})$
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be nontrivially normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}'$, and let $f : E \to F$ be a function differentiable at a point $x \in E$ over $\mathbb{K}'$. Then the Frรฉchet derivative of $f$ at $x$ over $\mathbb{K}$ is equal to the restriction of scalars of the Frรฉchet derivative of $f$ at $x$ over $\mathbb{K}'$, i.e., \[ \text{fderiv}_{\mathbb{K}} f x = (\text{fderiv}_{\mathbb{K}'} f x).\text{restrictScalars}(\mathbb{K}). \]
differentiableWithinAt_iff_restrictScalars theorem
(hf : DifferentiableWithinAt ๐•œ f s x) (hs : UniqueDiffWithinAt ๐•œ s x) : DifferentiableWithinAt ๐•œ' f s x โ†” โˆƒ g' : E โ†’L[๐•œ'] F, g'.restrictScalars ๐•œ = fderivWithin ๐•œ f s x
Full source
theorem differentiableWithinAt_iff_restrictScalars (hf : DifferentiableWithinAt ๐•œ f s x)
    (hs : UniqueDiffWithinAt ๐•œ s x) : DifferentiableWithinAtDifferentiableWithinAt ๐•œ' f s x โ†”
      โˆƒ g' : E โ†’L[๐•œ'] F, g'.restrictScalars ๐•œ = fderivWithin ๐•œ f s x := by
  constructor
  ยท rintro โŸจg', hg'โŸฉ
    exact โŸจg', hs.eq (hg'.restrictScalars ๐•œ) hf.hasFDerivWithinAtโŸฉ
  ยท rintro โŸจf', hf'โŸฉ
    exact โŸจf', hf.hasFDerivWithinAt.of_restrictScalars ๐•œ hf'โŸฉ
Differentiability over $\mathbb{K}'$ via scalar restriction of the derivative
Informal description
Let $E$ and $F$ be normed spaces over a nontrivially normed field $\mathbb{K}$, and let $\mathbb{K}'$ be a normed algebra over $\mathbb{K}$. Let $f : E \to F$ be a function differentiable at a point $x \in E$ within a subset $s \subseteq E$, and assume $s$ is uniquely differentiable at $x$. Then $f$ is differentiable at $x$ within $s$ over $\mathbb{K}'$ if and only if there exists a continuous $\mathbb{K}'$-linear map $g' : E \to F$ whose restriction of scalars to $\mathbb{K}$ equals the Frรฉchet derivative of $f$ at $x$ within $s$ over $\mathbb{K}$.
differentiableAt_iff_restrictScalars theorem
(hf : DifferentiableAt ๐•œ f x) : DifferentiableAt ๐•œ' f x โ†” โˆƒ g' : E โ†’L[๐•œ'] F, g'.restrictScalars ๐•œ = fderiv ๐•œ f x
Full source
theorem differentiableAt_iff_restrictScalars (hf : DifferentiableAt ๐•œ f x) :
    DifferentiableAtDifferentiableAt ๐•œ' f x โ†” โˆƒ g' : E โ†’L[๐•œ'] F, g'.restrictScalars ๐•œ = fderiv ๐•œ f x := by
  rw [โ† differentiableWithinAt_univ, โ† fderivWithin_univ]
  exact
    differentiableWithinAt_iff_restrictScalars ๐•œ hf.differentiableWithinAt uniqueDiffWithinAt_univ
Differentiability over $\mathbb{K}'$ via scalar restriction of the derivative at a point
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be nontrivially normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ and $F$ be normed spaces over $\mathbb{K}$, and let $f : E \to F$ be a function differentiable at $x \in E$ over $\mathbb{K}$. Then $f$ is differentiable at $x$ over $\mathbb{K}'$ if and only if there exists a continuous $\mathbb{K}'$-linear map $g' : E \to F$ whose restriction of scalars to $\mathbb{K}$ equals the Frรฉchet derivative of $f$ at $x$ over $\mathbb{K}$.