doc-next-gen

Mathlib.Analysis.Analytic.Within

Module docstring

{"# Properties of analyticity restricted to a set

From Mathlib.Analysis.Analytic.Basic, we have the definitions

  1. AnalyticWithinAt 𝕜 f s x means a power series at x converges to f on 𝓝[insert x s] x.
  2. AnalyticOn 𝕜 f s t means ∀ x ∈ t, AnalyticWithinAt 𝕜 f s x.

This means there exists an extension of f which is analytic and agrees with f on s ∪ {x}, but f is allowed to be arbitrary elsewhere.

Here we prove basic properties of these definitions. Where convenient we assume completeness of the ambient space, which allows us to relate AnalyticWithinAt to analyticity of a local extension. ","### Basic properties ","### Equivalence to analyticity of a local extension

We show that HasFPowerSeriesWithinOnBall, HasFPowerSeriesWithinAt, and AnalyticWithinAt are equivalent to the existence of a local extension with full analyticity. We do not yet show a result for AnalyticOn, as this requires a bit more work to show that local extensions can be stitched together. "}

analyticWithinAt_of_singleton_mem theorem
{f : E → F} {s : Set E} {x : E} (h : { x } ∈ 𝓝[s] x) : AnalyticWithinAt 𝕜 f s x
Full source
/-- `AnalyticWithinAt` is trivial if `{x} ∈ 𝓝[s] x` -/
lemma analyticWithinAt_of_singleton_mem {f : E → F} {s : Set E} {x : E} (h : {x}{x} ∈ 𝓝[s] x) :
    AnalyticWithinAt 𝕜 f s x := by
  rcases mem_nhdsWithin.mp h with ⟨t, ot, xt, st⟩
  rcases Metric.mem_nhds_iff.mp (ot.mem_nhds xt) with ⟨r, r0, rt⟩
  exact ⟨constFormalMultilinearSeries 𝕜 E (f x), .ofReal r,
  { r_le := by simp only [FormalMultilinearSeries.constFormalMultilinearSeries_radius, le_top]
    r_pos := by positivity
    hasSum := by
      intro y ys yr
      simp only [subset_singleton_iff, mem_inter_iff, and_imp] at st
      simp only [mem_insert_iff, add_eq_left] at ys
      have : x + y = x := by
        rcases ys with rfl | ys
        · simp
        · exact st (x + y) (rt (by simpa using yr)) ys
      simp only [this]
      apply (hasFPowerSeriesOnBall_const (e := 0)).hasSum
      simp only [Metric.emetric_ball_top, mem_univ] }⟩
Analyticity at Isolated Points
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, and let $f : E \to F$ be a function defined on a subset $s \subseteq E$. For a point $x \in s$, if the singleton set $\{x\}$ is in the neighborhood filter of $x$ restricted to $s$ (i.e., $\{x\} \in \mathcal{N}_s(x)$), then $f$ is analytic within $s$ at $x$.
analyticOn_of_locally_analyticOn theorem
{f : E → F} {s : Set E} (h : ∀ x ∈ s, ∃ u, IsOpen u ∧ x ∈ u ∧ AnalyticOn 𝕜 f (s ∩ u)) : AnalyticOn 𝕜 f s
Full source
/-- If `f` is `AnalyticOn` near each point in a set, it is `AnalyticOn` the set -/
lemma analyticOn_of_locally_analyticOn {f : E → F} {s : Set E}
    (h : ∀ x ∈ s, ∃ u, IsOpen u ∧ x ∈ u ∧ AnalyticOn 𝕜 f (s ∩ u)) :
    AnalyticOn 𝕜 f s := by
  intro x m
  rcases h x m with ⟨u, ou, xu, fu⟩
  rcases Metric.mem_nhds_iff.mp (ou.mem_nhds xu) with ⟨r, r0, ru⟩
  rcases fu x ⟨m, xu⟩ with ⟨p, t, fp⟩
  exact ⟨p, min (.ofReal r) t,
    { r_pos := lt_min (by positivity) fp.r_pos
      r_le := min_le_of_right_le fp.r_le
      hasSum := by
        intro y ys yr
        simp only [EMetric.mem_ball, lt_min_iff, edist_lt_ofReal, dist_zero_right] at yr
        apply fp.hasSum
        · simp only [mem_insert_iff, add_eq_left] at ys
          rcases ys with rfl | ys
          · simp
          · simp only [mem_insert_iff, add_eq_left, mem_inter_iff, ys, true_and]
            apply Or.inr (ru ?_)
            simp only [Metric.mem_ball, dist_self_add_left, yr]
        · simp only [EMetric.mem_ball, yr] }⟩
Local Analyticity Implies Global Analyticity on a Set
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, and let $f : E \to F$ be a function defined on a subset $s \subseteq E$. If for every point $x \in s$ there exists an open neighborhood $u$ of $x$ such that $f$ is analytic on $s \cap u$, then $f$ is analytic on the entire set $s$.
IsOpen.analyticOn_iff_analyticOnNhd theorem
{f : E → F} {s : Set E} (hs : IsOpen s) : AnalyticOn 𝕜 f s ↔ AnalyticOnNhd 𝕜 f s
Full source
/-- On open sets, `AnalyticOnNhd` and `AnalyticOn` coincide -/
lemma IsOpen.analyticOn_iff_analyticOnNhd {f : E → F} {s : Set E} (hs : IsOpen s) :
    AnalyticOnAnalyticOn 𝕜 f s ↔ AnalyticOnNhd 𝕜 f s := by
  refine ⟨?_, AnalyticOnNhd.analyticOn⟩
  intro hf x m
  rcases Metric.mem_nhds_iff.mp (hs.mem_nhds m) with ⟨r, r0, rs⟩
  rcases hf x m with ⟨p, t, fp⟩
  exact ⟨p, min (.ofReal r) t,
  { r_pos := lt_min (by positivity) fp.r_pos
    r_le := min_le_of_right_le fp.r_le
    hasSum := by
      intro y ym
      simp only [EMetric.mem_ball, lt_min_iff, edist_lt_ofReal, dist_zero_right] at ym
      refine fp.hasSum ?_ ym.2
      apply mem_insert_of_mem
      apply rs
      simp only [Metric.mem_ball, dist_self_add_left, ym.1] }⟩
Equivalence of Analyticity and Local Analyticity on Open Sets
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, and let $s \subseteq E$ be an open set. For a function $f : E \to F$, the following are equivalent: 1. $f$ is analytic on $s$ (i.e., for every $x \in s$, $f$ is analytic within $s$ at $x$). 2. $f$ is locally analytic on $s$ (i.e., for every $x \in s$, there exists a neighborhood $U$ of $x$ such that $f$ is analytic on $U$).
hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall theorem
[CompleteSpace F] {f : E → F} {p : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} {r : ℝ≥0∞} : HasFPowerSeriesWithinOnBall f p s x r ↔ ∃ g, EqOn f g (insert x s ∩ EMetric.ball x r) ∧ HasFPowerSeriesOnBall g p x r
Full source
/-- `f` has power series `p` at `x` iff some local extension of `f` has that series -/
lemma hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall [CompleteSpace F] {f : E → F}
    {p : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} {r : ℝ≥0∞} :
    HasFPowerSeriesWithinOnBallHasFPowerSeriesWithinOnBall f p s x r ↔
      ∃ g, EqOn f g (insert x s ∩ EMetric.ball x r) ∧
        HasFPowerSeriesOnBall g p x r := by
  constructor
  · intro h
    refine ⟨fun y ↦ p.sum (y - x), ?_, ?_⟩
    · intro y ⟨ys,yb⟩
      simp only [EMetric.mem_ball, edist_eq_enorm_sub] at yb
      have e0 := p.hasSum (x := y - x) ?_
      have e1 := (h.hasSum (y := y - x) ?_ ?_)
      · simp only [add_sub_cancel] at e1
        exact e1.unique e0
      · simpa only [add_sub_cancel]
      · simpa only [EMetric.mem_ball, edist_zero_eq_enorm]
      · simp only [EMetric.mem_ball, edist_zero_eq_enorm]
        exact lt_of_lt_of_le yb h.r_le
    · refine ⟨h.r_le, h.r_pos, ?_⟩
      intro y lt
      simp only [add_sub_cancel_left]
      apply p.hasSum
      simp only [EMetric.mem_ball] at lt ⊢
      exact lt_of_lt_of_le lt h.r_le
  · intro ⟨g, hfg, hg⟩
    refine ⟨hg.r_le, hg.r_pos, ?_⟩
    intro y ys lt
    rw [hfg]
    · exact hg.hasSum lt
    · refine ⟨ys, ?_⟩
      simpa only [EMetric.mem_ball, edist_eq_enorm_sub, add_sub_cancel_left, sub_zero] using lt
Characterization of Power Series Expansion Within a Ball via Local Extension
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, with $F$ complete. For a function $f : E \to F$, a formal power series $p$ at $x \in E$, a set $s \subseteq E$, and a radius $r \in \mathbb{R}_{\geq 0} \cup \{\infty\}$, the following are equivalent: 1. The function $f$ has the power series expansion $p$ within the set $s$ on the ball of radius $r$ centered at $x$. 2. There exists a function $g : E \to F$ that agrees with $f$ on the intersection of the ball of radius $r$ centered at $x$ with $s \cup \{x\}$, and $g$ has the power series expansion $p$ on the entire ball of radius $r$ centered at $x$.
hasFPowerSeriesWithinAt_iff_exists_hasFPowerSeriesAt theorem
[CompleteSpace F] {f : E → F} {p : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} : HasFPowerSeriesWithinAt f p s x ↔ ∃ g, f =ᶠ[𝓝[insert x s] x] g ∧ HasFPowerSeriesAt g p x
Full source
/-- `f` has power series `p` at `x` iff some local extension of `f` has that series -/
lemma hasFPowerSeriesWithinAt_iff_exists_hasFPowerSeriesAt [CompleteSpace F] {f : E → F}
    {p : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} :
    HasFPowerSeriesWithinAtHasFPowerSeriesWithinAt f p s x ↔
      ∃ g, f =ᶠ[𝓝[insert x s] x] g ∧ HasFPowerSeriesAt g p x := by
  constructor
  · intro ⟨r, h⟩
    rcases hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall.mp h with ⟨g, e, h⟩
    refine ⟨g, ?_, ⟨r, h⟩⟩
    refine Filter.eventuallyEq_iff_exists_mem.mpr ⟨_, ?_, e⟩
    exact inter_mem_nhdsWithin _ (EMetric.ball_mem_nhds _ h.r_pos)
  · intro ⟨g, hfg, ⟨r, hg⟩⟩
    simp only [eventuallyEq_nhdsWithin_iff, Metric.eventually_nhds_iff] at hfg
    rcases hfg with ⟨e, e0, hfg⟩
    refine ⟨min r (.ofReal e), ?_⟩
    refine hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall.mpr ⟨g, ?_, ?_⟩
    · intro y ⟨ys, xy⟩
      refine hfg ?_ ys
      simp only [EMetric.mem_ball, lt_min_iff, edist_lt_ofReal] at xy
      exact xy.2
    · exact hg.mono (lt_min hg.r_pos (by positivity)) (min_le_left _ _)
Characterization of Power Series Expansion Within a Set via Local Extension
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, with $F$ complete. For a function $f : E \to F$, a formal power series $p$ at $x \in E$, and a set $s \subseteq E$, the following are equivalent: 1. The function $f$ has the power series expansion $p$ within the set $s$ at $x$. 2. There exists a function $g : E \to F$ that agrees with $f$ on a neighborhood of $x$ within $s \cup \{x\}$, and $g$ has the power series expansion $p$ at $x$.
analyticWithinAt_iff_exists_analyticAt theorem
[CompleteSpace F] {f : E → F} {s : Set E} {x : E} : AnalyticWithinAt 𝕜 f s x ↔ ∃ g, f =ᶠ[𝓝[insert x s] x] g ∧ AnalyticAt 𝕜 g x
Full source
/-- `f` is analytic within `s` at `x` iff some local extension of `f` is analytic at `x` -/
lemma analyticWithinAt_iff_exists_analyticAt [CompleteSpace F] {f : E → F} {s : Set E} {x : E} :
    AnalyticWithinAtAnalyticWithinAt 𝕜 f s x ↔
      ∃ g, f =ᶠ[𝓝[insert x s] x] g ∧ AnalyticAt 𝕜 g x := by
  simp only [AnalyticWithinAt, AnalyticAt, hasFPowerSeriesWithinAt_iff_exists_hasFPowerSeriesAt]
  tauto
Characterization of Analyticity Within a Set via Local Extensions
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, with $F$ complete. For a function $f : E \to F$, a set $s \subseteq E$, and a point $x \in E$, the following are equivalent: 1. $f$ is analytic within $s$ at $x$ (i.e., there exists a power series at $x$ that converges to $f$ on a neighborhood of $x$ within $s \cup \{x\}$). 2. There exists a function $g : E \to F$ that is analytic at $x$ and agrees with $f$ on a neighborhood of $x$ within $s \cup \{x\}$.
analyticWithinAt_iff_exists_analyticAt' theorem
[CompleteSpace F] {f : E → F} {s : Set E} {x : E} : AnalyticWithinAt 𝕜 f s x ↔ ∃ g, f x = g x ∧ EqOn f g (insert x s) ∧ AnalyticAt 𝕜 g x
Full source
/-- `f` is analytic within `s` at `x` iff some local extension of `f` is analytic at `x`. In this
version, we make sure that the extension coincides with `f` on all of `insert x s`. -/
lemma analyticWithinAt_iff_exists_analyticAt' [CompleteSpace F] {f : E → F} {s : Set E} {x : E} :
    AnalyticWithinAtAnalyticWithinAt 𝕜 f s x ↔
      ∃ g, f x = g x ∧ EqOn f g (insert x s) ∧ AnalyticAt 𝕜 g x := by
  classical
  simp only [analyticWithinAt_iff_exists_analyticAt]
  refine ⟨?_, ?_⟩
  · rintro ⟨g, hf, hg⟩
    rcases mem_nhdsWithin.1 hf with ⟨u, u_open, xu, hu⟩
    let g' := Set.piecewise u g f
    refine ⟨g', ?_, ?_, ?_⟩
    · have : x ∈ u ∩ insert x s := ⟨xu, by simp⟩
      simpa [g', xu, this] using hu this
    · intro y hy
      by_cases h'y : y ∈ u
      · have : y ∈ u ∩ insert x s := ⟨h'y, hy⟩
        simpa [g', h'y, this] using hu this
      · simp [g', h'y]
    · apply hg.congr
      filter_upwards [u_open.mem_nhds xu] with y hy using by simp [g', hy]
  · rintro ⟨g, -, hf, hg⟩
    exact ⟨g, by filter_upwards [self_mem_nhdsWithin] using hf, hg⟩
Characterization of Analyticity Within a Set via Local Extensions
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, with $F$ complete. For a function $f : E \to F$, a set $s \subseteq E$, and a point $x \in E$, the following are equivalent: 1. $f$ is analytic within $s$ at $x$ (i.e., there exists a power series centered at $x$ that converges to $f$ on a neighborhood of $x$ within $s \cup \{x\}$). 2. There exists a function $g : E \to F$ such that: - $f(x) = g(x)$, - $f$ and $g$ coincide on $s \cup \{x\}$, - $g$ is analytic at $x$.
AnalyticWithinAt.exists_mem_nhdsWithin_analyticOn theorem
[CompleteSpace F] {f : E → F} {s : Set E} {x : E} (h : AnalyticWithinAt 𝕜 f s x) : ∃ u ∈ 𝓝[insert x s] x, AnalyticOn 𝕜 f u
Full source
lemma AnalyticWithinAt.exists_mem_nhdsWithin_analyticOn
    [CompleteSpace F] {f : E → F} {s : Set E} {x : E} (h : AnalyticWithinAt 𝕜 f s x) :
    ∃ u ∈ 𝓝[insert x s] x, AnalyticOn 𝕜 f u := by
  obtain ⟨g, -, h'g, hg⟩ : ∃ g, f x = g x ∧ EqOn f g (insert x s) ∧ AnalyticAt 𝕜 g x :=
    h.exists_analyticAt
  let u := insertinsert x s ∩ {y | AnalyticAt 𝕜 g y}
  refine ⟨u, ?_, ?_⟩
  · exact inter_mem_nhdsWithin _ ((isOpen_analyticAt 𝕜 g).mem_nhds hg)
  · intro y hy
    have : AnalyticWithinAt 𝕜 g u y := hy.2.analyticWithinAt
    exact this.congr (h'g.mono (inter_subset_left)) (h'g (inter_subset_left hy))
Local Analytic Extension of a Function Analytic Within a Set
Informal description
Let $E$ and $F$ be normed vector spaces over a complete normed field $\mathbb{K}$, with $F$ complete. For a function $f : E \to F$, a set $s \subseteq E$, and a point $x \in E$, if $f$ is analytic within $s$ at $x$, then there exists a neighborhood $u$ of $x$ within $s \cup \{x\}$ such that $f$ is analytic on $u$.