doc-next-gen

Mathlib.Analysis.Analytic.CPolynomial

Module docstring

{"# Properties of continuously polynomial functions

We expand the API around continuously polynomial functions. Notably, we show that this class is stable under the usual operations (addition, subtraction, negation).

We also prove that continuous multilinear maps are continuously polynomial, and so are continuous linear maps into continuous multilinear maps. In particular, such maps are analytic. ","### Continuous multilinear maps

We show that continuous multilinear maps are continuously polynomial, and therefore analytic. ","### Continuous linear maps into continuous multilinear maps

We show that a continuous linear map into continuous multilinear maps is continuously polynomial (as a function of two variables, i.e., uncurried). Therefore, it is also analytic. "}

hasFiniteFPowerSeriesOnBall_const theorem
{c : F} {e : E} : HasFiniteFPowerSeriesOnBall (fun _ => c) (constFormalMultilinearSeries π•œ E c) e 1 ⊀
Full source
theorem hasFiniteFPowerSeriesOnBall_const {c : F} {e : E} :
    HasFiniteFPowerSeriesOnBall (fun _ => c) (constFormalMultilinearSeries π•œ E c) e 1 ⊀ :=
  ⟨hasFPowerSeriesOnBall_const, fun n hn ↦ constFormalMultilinearSeries_apply (id hn : 0 < n).ne'⟩
Finite Power Series Expansion of Constant Function on Entire Space
Informal description
For any constant function $f(x) = c$ where $c \in F$, the formal multilinear series associated with $f$ is the constant formal multilinear series $\text{constFormalMultilinearSeries}_{\mathbb{K}}(E, c)$. This series has a finite power series expansion on the entire space (represented by the ball of radius 1 centered at any point $e \in E$ with the trivial filter $\top$).
hasFiniteFPowerSeriesAt_const theorem
{c : F} {e : E} : HasFiniteFPowerSeriesAt (fun _ => c) (constFormalMultilinearSeries π•œ E c) e 1
Full source
theorem hasFiniteFPowerSeriesAt_const {c : F} {e : E} :
    HasFiniteFPowerSeriesAt (fun _ => c) (constFormalMultilinearSeries π•œ E c) e 1 :=
  ⟨⊀, hasFiniteFPowerSeriesOnBall_const⟩
Finite Power Series Expansion of Constant Function at Point with Radius 1
Informal description
For any constant function $f(x) = c$ where $c \in F$ and any point $e \in E$, the function $f$ has a finite power series expansion at $e$ with radius of convergence at least 1, represented by the constant formal multilinear series $\text{constFormalMultilinearSeries}_{\mathbb{K}}(E, c)$.
CPolynomialOn_const theorem
{v : F} {s : Set E} : CPolynomialOn π•œ (fun _ => v) s
Full source
theorem CPolynomialOn_const {v : F} {s : Set E} : CPolynomialOn π•œ (fun _ => v) s :=
  fun _ _ => CPolynomialAt_const
Constant Functions are Continuously Polynomial on Any Subset
Informal description
For any constant function $f(x) = v$ where $v \in F$ and any subset $s \subseteq E$, the function $f$ is continuously polynomial on $s$.
HasFiniteFPowerSeriesOnBall.add theorem
(hf : HasFiniteFPowerSeriesOnBall f pf x n r) (hg : HasFiniteFPowerSeriesOnBall g pg x m r) : HasFiniteFPowerSeriesOnBall (f + g) (pf + pg) x (max n m) r
Full source
theorem HasFiniteFPowerSeriesOnBall.add (hf : HasFiniteFPowerSeriesOnBall f pf x n r)
    (hg : HasFiniteFPowerSeriesOnBall g pg x m r) :
    HasFiniteFPowerSeriesOnBall (f + g) (pf + pg) x (max n m) r :=
  ⟨hf.1.add hg.1, fun N hN ↦ by
    rw [Pi.add_apply, hf.finite _ ((le_max_left n m).trans hN),
        hg.finite _ ((le_max_right n m).trans hN), zero_add]⟩
Sum of Finite Formal Power Series Expansions on a Ball
Informal description
Let $f$ and $g$ be functions with finite formal power series expansions on a ball centered at $x$ with radius $r$, represented by $pf$ and $pg$ with degrees $n$ and $m$ respectively. Then the sum $f + g$ has a finite formal power series expansion on the same ball, represented by $pf + pg$ with degree $\max(n, m)$.
HasFiniteFPowerSeriesAt.add theorem
(hf : HasFiniteFPowerSeriesAt f pf x n) (hg : HasFiniteFPowerSeriesAt g pg x m) : HasFiniteFPowerSeriesAt (f + g) (pf + pg) x (max n m)
Full source
theorem HasFiniteFPowerSeriesAt.add (hf : HasFiniteFPowerSeriesAt f pf x n)
    (hg : HasFiniteFPowerSeriesAt g pg x m) :
    HasFiniteFPowerSeriesAt (f + g) (pf + pg) x (max n m) := by
  rcases (hf.eventually.and hg.eventually).exists with ⟨r, hr⟩
  exact ⟨r, hr.1.add hr.2⟩
Sum of Finite Formal Power Series Expansions at a Point
Informal description
Let $f$ and $g$ be functions with finite formal power series expansions at a point $x$, represented by $pf$ and $pg$ with degrees $n$ and $m$ respectively. Then the sum $f + g$ has a finite formal power series expansion at $x$, represented by $pf + pg$ with degree $\max(n, m)$.
CPolynomialAt.add theorem
(hf : CPolynomialAt π•œ f x) (hg : CPolynomialAt π•œ g x) : CPolynomialAt π•œ (f + g) x
Full source
theorem CPolynomialAt.add (hf : CPolynomialAt π•œ f x) (hg : CPolynomialAt π•œ g x) :
    CPolynomialAt π•œ (f + g) x :=
  let ⟨_, _, hpf⟩ := hf
  let ⟨_, _, hqf⟩ := hg
  (hpf.add hqf).cpolynomialAt
Sum of Continuously Polynomial Functions at a Point is Continuously Polynomial
Informal description
Let $f$ and $g$ be functions that are continuously polynomial at a point $x$ over a field $\mathbb{K}$. Then the sum $f + g$ is also continuously polynomial at $x$ over $\mathbb{K}$.
HasFiniteFPowerSeriesOnBall.neg theorem
(hf : HasFiniteFPowerSeriesOnBall f pf x n r) : HasFiniteFPowerSeriesOnBall (-f) (-pf) x n r
Full source
theorem HasFiniteFPowerSeriesOnBall.neg (hf : HasFiniteFPowerSeriesOnBall f pf x n r) :
    HasFiniteFPowerSeriesOnBall (-f) (-pf) x n r :=
  ⟨hf.1.neg, fun m hm ↦ by rw [Pi.neg_apply, hf.finite m hm, neg_zero]⟩
Negation Preserves Finite Formal Power Series Expansion on a Ball
Informal description
Let $f$ be a function defined on a ball centered at $x$ with radius $r$, admitting a finite formal power series expansion $pf$ at $x$ of order $n$. Then the negation of $f$, denoted $-f$, also admits a finite formal power series expansion $-pf$ at $x$ of the same order $n$ on the same ball.
HasFiniteFPowerSeriesAt.neg theorem
(hf : HasFiniteFPowerSeriesAt f pf x n) : HasFiniteFPowerSeriesAt (-f) (-pf) x n
Full source
theorem HasFiniteFPowerSeriesAt.neg (hf : HasFiniteFPowerSeriesAt f pf x n) :
    HasFiniteFPowerSeriesAt (-f) (-pf) x n :=
  let ⟨_, hrf⟩ := hf
  hrf.neg.hasFiniteFPowerSeriesAt
Negation Preserves Finite Formal Power Series Expansion at a Point
Informal description
Let $f$ be a function admitting a finite formal power series expansion $pf$ at a point $x$ of order $n$. Then the negation of $f$, denoted $-f$, also admits a finite formal power series expansion $-pf$ at $x$ of the same order $n$.
CPolynomialAt.neg theorem
(hf : CPolynomialAt π•œ f x) : CPolynomialAt π•œ (-f) x
Full source
theorem CPolynomialAt.neg (hf : CPolynomialAt π•œ f x) : CPolynomialAt π•œ (-f) x :=
  let ⟨_, _, hpf⟩ := hf
  hpf.neg.cpolynomialAt
Negation preserves continuous polynomiality at a point
Informal description
Let $\mathbb{K}$ be a field, $f$ a function, and $x$ a point such that $f$ is continuously polynomial at $x$ over $\mathbb{K}$. Then the negation of $f$, $-f$, is also continuously polynomial at $x$ over $\mathbb{K}$.
HasFiniteFPowerSeriesOnBall.sub theorem
(hf : HasFiniteFPowerSeriesOnBall f pf x n r) (hg : HasFiniteFPowerSeriesOnBall g pg x m r) : HasFiniteFPowerSeriesOnBall (f - g) (pf - pg) x (max n m) r
Full source
theorem HasFiniteFPowerSeriesOnBall.sub (hf : HasFiniteFPowerSeriesOnBall f pf x n r)
    (hg : HasFiniteFPowerSeriesOnBall g pg x m r) :
    HasFiniteFPowerSeriesOnBall (f - g) (pf - pg) x (max n m) r := by
  simpa only [sub_eq_add_neg] using hf.add hg.neg
Difference of Finite Formal Power Series Expansions on a Ball
Informal description
Let $f$ and $g$ be functions with finite formal power series expansions on a ball centered at $x$ with radius $r$, represented by $pf$ and $pg$ with degrees $n$ and $m$ respectively. Then the difference $f - g$ has a finite formal power series expansion on the same ball, represented by $pf - pg$ with degree $\max(n, m)$.
HasFiniteFPowerSeriesAt.sub theorem
(hf : HasFiniteFPowerSeriesAt f pf x n) (hg : HasFiniteFPowerSeriesAt g pg x m) : HasFiniteFPowerSeriesAt (f - g) (pf - pg) x (max n m)
Full source
theorem HasFiniteFPowerSeriesAt.sub (hf : HasFiniteFPowerSeriesAt f pf x n)
    (hg : HasFiniteFPowerSeriesAt g pg x m) :
    HasFiniteFPowerSeriesAt (f - g) (pf - pg) x (max n m) := by
  simpa only [sub_eq_add_neg] using hf.add hg.neg
Difference of Finite Formal Power Series Expansions at a Point
Informal description
Let $f$ and $g$ be functions with finite formal power series expansions at a point $x$, represented by $pf$ and $pg$ with degrees $n$ and $m$ respectively. Then the difference $f - g$ has a finite formal power series expansion at $x$, represented by $pf - pg$ with degree $\max(n, m)$.
CPolynomialAt.sub theorem
(hf : CPolynomialAt π•œ f x) (hg : CPolynomialAt π•œ g x) : CPolynomialAt π•œ (f - g) x
Full source
theorem CPolynomialAt.sub (hf : CPolynomialAt π•œ f x) (hg : CPolynomialAt π•œ g x) :
    CPolynomialAt π•œ (f - g) x := by
  simpa only [sub_eq_add_neg] using hf.add hg.neg
Difference of Continuously Polynomial Functions at a Point is Continuously Polynomial
Informal description
Let $\mathbb{K}$ be a field, and let $f$ and $g$ be functions that are continuously polynomial at a point $x$ over $\mathbb{K}$. Then the difference $f - g$ is also continuously polynomial at $x$ over $\mathbb{K}$.
CPolynomialOn.add theorem
{s : Set E} (hf : CPolynomialOn π•œ f s) (hg : CPolynomialOn π•œ g s) : CPolynomialOn π•œ (f + g) s
Full source
theorem CPolynomialOn.add {s : Set E} (hf : CPolynomialOn π•œ f s) (hg : CPolynomialOn π•œ g s) :
    CPolynomialOn π•œ (f + g) s :=
  fun z hz => (hf z hz).add (hg z hz)
Sum of Continuously Polynomial Functions on a Set is Continuously Polynomial
Informal description
Let $f$ and $g$ be functions defined on a set $s \subseteq E$ that are continuously polynomial over a field $\mathbb{K}$ on $s$. Then the sum $f + g$ is also continuously polynomial over $\mathbb{K}$ on $s$.
CPolynomialOn.sub theorem
{s : Set E} (hf : CPolynomialOn π•œ f s) (hg : CPolynomialOn π•œ g s) : CPolynomialOn π•œ (f - g) s
Full source
theorem CPolynomialOn.sub {s : Set E} (hf : CPolynomialOn π•œ f s) (hg : CPolynomialOn π•œ g s) :
    CPolynomialOn π•œ (f - g) s :=
  fun z hz => (hf z hz).sub (hg z hz)
Difference of Continuously Polynomial Functions on a Set is Continuously Polynomial
Informal description
Let $\mathbb{K}$ be a field, $E$ be a vector space over $\mathbb{K}$, and $s \subseteq E$ be a subset. If $f$ and $g$ are functions that are continuously polynomial on $s$ over $\mathbb{K}$, then their difference $f - g$ is also continuously polynomial on $s$ over $\mathbb{K}$.
ContinuousMultilinearMap.hasFiniteFPowerSeriesOnBall theorem
: HasFiniteFPowerSeriesOnBall f f.toFormalMultilinearSeries 0 (Fintype.card ι + 1) ⊀
Full source
protected theorem hasFiniteFPowerSeriesOnBall :
    HasFiniteFPowerSeriesOnBall f f.toFormalMultilinearSeries 0 (Fintype.card ι + 1) ⊀ :=
  .mk' (fun _ hm ↦ dif_neg (Nat.succ_le_iff.mp hm).ne) ENNReal.zero_lt_top fun y _ ↦ by
    rw [Finset.sum_eq_single_of_mem _ (Finset.self_mem_range_succ _), zero_add]
    Β· rw [toFormalMultilinearSeries, dif_pos rfl]; rfl
    Β· intro m _ ne; rw [toFormalMultilinearSeries, dif_neg ne.symm]; rfl
Finite Formal Power Series Expansion of Continuous Multilinear Maps
Informal description
Let $f$ be a continuous multilinear map. Then $f$ has a finite formal power series expansion on the entire space, represented by its associated formal multilinear series $f.\text{toFormalMultilinearSeries}$, centered at $0$ with radius of convergence at least $\text{card}(\iota) + 1$, where $\iota$ is the indexing type of the multilinear map.
ContinuousMultilinearMap.cpolynomialOn theorem
: CPolynomialOn π•œ f s
Full source
lemma cpolynomialOn : CPolynomialOn π•œ f s := fun _ _ ↦ f.cpolynomialAt
Continuous Multilinear Maps are Continuously Polynomial on Subsets
Informal description
For any continuous multilinear map $f$ over a field $\mathbb{K}$ and any subset $s$ of its domain, $f$ is continuously polynomial on $s$.
ContinuousMultilinearMap.analyticOnNhd theorem
: AnalyticOnNhd π•œ f s
Full source
lemma analyticOnNhd : AnalyticOnNhd π•œ f s := f.cpolynomialOn.analyticOnNhd
Continuous Multilinear Maps are Analytic on Neighborhoods of Subsets
Informal description
For any continuous multilinear map $f$ over a field $\mathbb{K}$ and any subset $s$ of its domain, $f$ is analytic on a neighborhood of $s$.
ContinuousMultilinearMap.analyticOn theorem
: AnalyticOn π•œ f s
Full source
lemma analyticOn : AnalyticOn π•œ f s := f.analyticOnNhd.analyticOn
Analyticity of Continuous Multilinear Maps on Subsets
Informal description
For any continuous multilinear map $f$ over a field $\mathbb{K}$ and any subset $s$ of its domain, $f$ is analytic on $s$.
ContinuousMultilinearMap.analyticAt theorem
: AnalyticAt π•œ f x
Full source
lemma analyticAt : AnalyticAt π•œ f x := f.cpolynomialAt.analyticAt
Continuous Multilinear Maps are Analytic at Every Point
Informal description
For any continuous multilinear map $f$ over a field $\mathbb{K}$ and any point $x$ in its domain, $f$ is analytic at $x$.
ContinuousMultilinearMap.analyticWithinAt theorem
: AnalyticWithinAt π•œ f s x
Full source
lemma analyticWithinAt : AnalyticWithinAt π•œ f s x := f.analyticAt.analyticWithinAt
Analyticity of Continuous Multilinear Maps Within a Subset at a Point
Informal description
For any continuous multilinear map $f$ over a field $\mathbb{K}$, any subset $s$ of its domain, and any point $x \in s$, the function $f$ is analytic at $x$ within $s$.
ContinuousLinearMap.toFormalMultilinearSeriesOfMultilinear definition
: FormalMultilinearSeries π•œ (G Γ— (Ξ  i, Em i)) F
Full source
/-- Formal multilinear series associated to a linear map into multilinear maps. -/
noncomputable def toFormalMultilinearSeriesOfMultilinear :
    FormalMultilinearSeries π•œ (G Γ— (Ξ  i, Em i)) F :=
  fun n ↦ if h : Fintype.card (Option ΞΉ) = n then
    (f.continuousMultilinearMapOption).domDomCongr (Fintype.equivFinOfCardEq h)
  else 0
Formal multilinear series of a linear map into multilinear maps
Informal description
The formal multilinear series associated to a continuous linear map \( f \) from \( G \) to continuous multilinear maps on \( \Pi_i E_i \) is defined as follows: for each degree \( n \), if \( n \) equals the cardinality of \( \text{Option} \iota \) (where \( \iota \) indexes the family \( E_i \)), then the \( n \)-th term of the series is obtained by reindexing the domain of \( f \) using the equivalence induced by the equality of cardinalities; otherwise, the term is zero.
ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear theorem
: HasFiniteFPowerSeriesOnBall (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) f.toFormalMultilinearSeriesOfMultilinear 0 (Fintype.card (Option ΞΉ) + 1) ⊀
Full source
protected theorem hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear :
    HasFiniteFPowerSeriesOnBall (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2)
      f.toFormalMultilinearSeriesOfMultilinear 0 (Fintype.card (Option ι) + 1) ⊀ := by
  apply HasFiniteFPowerSeriesOnBall.mk' ?_ ENNReal.zero_lt_top  ?_
  Β· intro m hm
    apply dif_neg
    exact Nat.ne_of_lt hm
  Β· intro y _
    rw [Finset.sum_eq_single_of_mem _ (Finset.self_mem_range_succ _), zero_add]
    Β· rw [toFormalMultilinearSeriesOfMultilinear, dif_pos rfl]; rfl
    Β· intro m _ ne; rw [toFormalMultilinearSeriesOfMultilinear, dif_neg ne.symm]; rfl
Finite Power Series Expansion of Uncurried Linear-Multilinear Map
Informal description
Let $G$ and $E_i$ for $i \in \iota$ be normed spaces over a field $\mathbb{K}$, and let $F$ be another normed space. Given a continuous linear map $f \colon G \to \text{ContinuousMultilinearMap}(\mathbb{K}, (E_i)_{i \in \iota}, F)$, the uncurried function $(g, (e_i)_{i \in \iota}) \mapsto f(g)((e_i)_{i \in \iota})$ has a finite formal power series expansion centered at $0$ with radius of convergence $\infty$. The degree of this power series is at most $\text{card}(\text{Option } \iota) + 1$, where $\text{Option } \iota$ is the indexing set $\iota$ extended by one element.
ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear theorem
: CPolynomialAt π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) x
Full source
lemma cpolynomialAt_uncurry_of_multilinear :
    CPolynomialAt π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) x :=
  f.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear.cpolynomialAt_of_mem
    (by simp only [Metric.emetric_ball_top, Set.mem_univ])
Continuous Polynomiality of Uncurried Linear-Multilinear Maps
Informal description
Let $G$ and $E_i$ for $i \in \iota$ be normed spaces over a field $\mathbb{K}$, and let $F$ be another normed space. Given a continuous linear map $f \colon G \to \text{ContinuousMultilinearMap}(\mathbb{K}, (E_i)_{i \in \iota}, F)$, the uncurried function $(g, (e_i)_{i \in \iota}) \mapsto f(g)((e_i)_{i \in \iota})$ is continuously polynomial at every point $x \in G \times (\Pi_{i \in \iota} E_i)$.
ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear theorem
: CPolynomialOn π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s
Full source
lemma cpolyomialOn_uncurry_of_multilinear :
    CPolynomialOn π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s :=
  fun _ _ ↦ f.cpolynomialAt_uncurry_of_multilinear
Continuous Polynomiality of Uncurried Linear-Multilinear Maps on Subsets
Informal description
Let $G$ and $E_i$ for $i \in \iota$ be normed spaces over a field $\mathbb{K}$, and let $F$ be another normed space. Given a continuous linear map $f \colon G \to \text{ContinuousMultilinearMap}(\mathbb{K}, (E_i)_{i \in \iota}, F)$, the uncurried function $(g, (e_i)_{i \in \iota}) \mapsto f(g)((e_i)_{i \in \iota})$ is continuously polynomial on any subset $s \subseteq G \times (\Pi_{i \in \iota} E_i)$.
ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear theorem
: AnalyticOnNhd π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s
Full source
lemma analyticOnNhd_uncurry_of_multilinear :
    AnalyticOnNhd π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s :=
  f.cpolyomialOn_uncurry_of_multilinear.analyticOnNhd
Analyticity of Uncurried Linear-Multilinear Maps on Neighborhoods of Subsets
Informal description
Let $\mathbb{K}$ be a field, $G$ and $E_i$ (for $i \in \iota$) be normed spaces over $\mathbb{K}$, and $F$ another normed space. Given a continuous linear map $f \colon G \to \text{ContinuousMultilinearMap}(\mathbb{K}, (E_i)_{i \in \iota}, F)$, the uncurried function $(g, (e_i)_{i \in \iota}) \mapsto f(g)((e_i)_{i \in \iota})$ is analytic on a neighborhood of any subset $s \subseteq G \times (\Pi_{i \in \iota} E_i)$.
ContinuousLinearMap.analyticOn_uncurry_of_multilinear theorem
: AnalyticOn π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s
Full source
lemma analyticOn_uncurry_of_multilinear :
    AnalyticOn π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s :=
  f.analyticOnNhd_uncurry_of_multilinear.analyticOn
Analyticity of Uncurried Linear-Multilinear Maps on Subsets
Informal description
Let $\mathbb{K}$ be a field, $G$ and $E_i$ (for $i \in \iota$) be normed spaces over $\mathbb{K}$, and $F$ another normed space. Given a continuous linear map $f \colon G \to \text{ContinuousMultilinearMap}(\mathbb{K}, (E_i)_{i \in \iota}, F)$, the uncurried function $(g, (e_i)_{i \in \iota}) \mapsto f(g)((e_i)_{i \in \iota})$ is analytic on any subset $s \subseteq G \times (\Pi_{i \in \iota} E_i)$.
ContinuousLinearMap.analyticAt_uncurry_of_multilinear theorem
: AnalyticAt π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) x
Full source
lemma analyticAt_uncurry_of_multilinear : AnalyticAt π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) x :=
  f.cpolynomialAt_uncurry_of_multilinear.analyticAt
Analyticity of Uncurried Linear-Multilinear Maps at a Point
Informal description
Let $\mathbb{K}$ be a field, $G$ and $E_i$ (for $i \in \iota$) be normed spaces over $\mathbb{K}$, and $F$ another normed space. Given a continuous linear map $f \colon G \to \text{ContinuousMultilinearMap}(\mathbb{K}, (E_i)_{i \in \iota}, F)$, the uncurried function $(g, (e_i)_{i \in \iota}) \mapsto f(g)((e_i)_{i \in \iota})$ is analytic at every point $x \in G \times (\Pi_{i \in \iota} E_i)$.
ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear theorem
: AnalyticWithinAt π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s x
Full source
lemma analyticWithinAt_uncurry_of_multilinear :
    AnalyticWithinAt π•œ (fun (p : G Γ— (Ξ  i, Em i)) ↦ f p.1 p.2) s x :=
  f.analyticAt_uncurry_of_multilinear.analyticWithinAt
Analyticity Within a Set of Uncurried Linear-Multilinear Maps at a Point
Informal description
Let $\mathbb{K}$ be a field, $G$ and $E_i$ (for $i \in \iota$) be normed spaces over $\mathbb{K}$, and $F$ another normed space. Given a continuous linear map $f \colon G \to \text{ContinuousMultilinearMap}(\mathbb{K}, (E_i)_{i \in \iota}, F)$, the uncurried function $(g, (e_i)_{i \in \iota}) \mapsto f(g)((e_i)_{i \in \iota})$ is analytic at the point $x \in G \times (\Pi_{i \in \iota} E_i)$ within the set $s \subseteq G \times (\Pi_{i \in \iota} E_i)$.