doc-next-gen

Mathlib.Algebra.Ring.Commute

Module docstring

{"# Semirings and rings

This file gives lemmas about semirings, rings and domains. This is analogous to Mathlib.Algebra.Group.Basic, the difference being that the former is about + and * separately, while the present file is about their interaction.

For the definitions of semirings and rings see Mathlib.Algebra.Ring.Defs.

"}

Commute.add_right theorem
[Distrib R] {a b c : R} : Commute a b → Commute a c → Commute a (b + c)
Full source
@[simp]
theorem add_right [Distrib R] {a b c : R} : Commute a b → Commute a c → Commute a (b + c) :=
  SemiconjBy.add_right
Right Sum of Commuting Elements Commutes with Third Element
Informal description
Let $R$ be a type with addition and multiplication satisfying distributivity. For any elements $a, b, c \in R$, if $a$ commutes with $b$ and $a$ commutes with $c$, then $a$ commutes with $b + c$. That is, $a * (b + c) = (b + c) * a$.
Commute.add_left theorem
[Distrib R] {a b c : R} : Commute a c → Commute b c → Commute (a + b) c
Full source
@[simp]
theorem add_left [Distrib R] {a b c : R} : Commute a c → Commute b c → Commute (a + b) c :=
  SemiconjBy.add_left
Sum of Commuting Elements Commutes with Third Element
Informal description
Let \( R \) be a type equipped with addition and multiplication satisfying distributivity. For any elements \( a, b, c \in R \), if \( a \) commutes with \( c \) and \( b \) commutes with \( c \), then \( a + b \) commutes with \( c \). That is, \((a + b) * c = c * (a + b)\).
Commute.mul_self_sub_mul_self_eq theorem
[NonUnitalNonAssocRing R] {a b : R} (h : Commute a b) : a * a - b * b = (a + b) * (a - b)
Full source
/-- Representation of a difference of two squares of commuting elements as a product. -/
theorem mul_self_sub_mul_self_eq [NonUnitalNonAssocRing R] {a b : R} (h : Commute a b) :
    a * a - b * b = (a + b) * (a - b) := by
  rw [add_mul, mul_sub, mul_sub, h.eq, sub_add_sub_cancel]
Difference of Squares Identity for Commuting Elements: $a^2 - b^2 = (a+b)(a-b)$
Informal description
Let $R$ be a non-unital non-associative ring, and let $a, b \in R$ be elements that commute (i.e., $ab = ba$). Then the difference of squares can be expressed as: \[ a^2 - b^2 = (a + b)(a - b) \]
Commute.mul_self_sub_mul_self_eq' theorem
[NonUnitalNonAssocRing R] {a b : R} (h : Commute a b) : a * a - b * b = (a - b) * (a + b)
Full source
theorem mul_self_sub_mul_self_eq' [NonUnitalNonAssocRing R] {a b : R} (h : Commute a b) :
    a * a - b * b = (a - b) * (a + b) := by
  rw [mul_add, sub_mul, sub_mul, h.eq, sub_add_sub_cancel]
Difference of Squares Identity for Commuting Elements in a Non-Unital Non-Associative Ring
Informal description
Let $R$ be a non-unital non-associative ring, and let $a, b \in R$ be elements that commute (i.e., $a * b = b * a$). Then the difference of squares can be expressed as: $$a^2 - b^2 = (a - b)(a + b).$$
Commute.mul_self_eq_mul_self_iff theorem
[NonUnitalNonAssocRing R] [NoZeroDivisors R] {a b : R} (h : Commute a b) : a * a = b * b ↔ a = b ∨ a = -b
Full source
theorem mul_self_eq_mul_self_iff [NonUnitalNonAssocRing R] [NoZeroDivisors R] {a b : R}
    (h : Commute a b) : a * a = b * b ↔ a = b ∨ a = -b := by
  rw [← sub_eq_zero, h.mul_self_sub_mul_self_eq, mul_eq_zero, or_comm, sub_eq_zero,
    add_eq_zero_iff_eq_neg]
Square Equality for Commuting Elements: $a^2 = b^2 \leftrightarrow a = b \lor a = -b$
Informal description
Let $R$ be a non-unital non-associative ring with no zero divisors, and let $a, b \in R$ be commuting elements (i.e., $ab = ba$). Then $a^2 = b^2$ if and only if $a = b$ or $a = -b$.
Commute.neg_right theorem
: Commute a b → Commute a (-b)
Full source
theorem neg_right : Commute a b → Commute a (-b) :=
  SemiconjBy.neg_right
Negation Preserves Commutation: $\text{Commute}(a, b) \to \text{Commute}(a, -b)$
Informal description
For any elements $a$ and $b$ in a multiplicative structure with distributive negation, if $a$ and $b$ commute (i.e., $a * b = b * a$), then $a$ and $-b$ also commute (i.e., $a * (-b) = (-b) * a$).
Commute.neg_right_iff theorem
: Commute a (-b) ↔ Commute a b
Full source
@[simp]
theorem neg_right_iff : CommuteCommute a (-b) ↔ Commute a b :=
  SemiconjBy.neg_right_iff
Negation Preserves Commutation: $\text{Commute}(a, -b) \leftrightarrow \text{Commute}(a, b)$
Informal description
For elements $a$ and $b$ in a multiplicative structure with distributive negation, the elements $a$ and $-b$ commute if and only if $a$ and $b$ commute. That is, $a * (-b) = (-b) * a$ if and only if $a * b = b * a$.
Commute.neg_left theorem
: Commute a b → Commute (-a) b
Full source
theorem neg_left : Commute a b → Commute (-a) b :=
  SemiconjBy.neg_left
Negation Preserves Commutation: $\text{Commute}(a, b) \to \text{Commute}(-a, b)$
Informal description
For any elements $a$ and $b$ in a multiplicative structure with distributive negation, if $a$ and $b$ commute (i.e., $a * b = b * a$), then $-a$ and $b$ also commute (i.e., $-a * b = b * -a$).
Commute.neg_left_iff theorem
: Commute (-a) b ↔ Commute a b
Full source
@[simp]
theorem neg_left_iff : CommuteCommute (-a) b ↔ Commute a b :=
  SemiconjBy.neg_left_iff
Negation Preserves Commutation: $\text{Commute}(-a, b) \leftrightarrow \text{Commute}(a, b)$
Informal description
For elements $a$ and $b$ in a multiplicative structure with distributive negation, the elements $-a$ and $b$ commute if and only if $a$ and $b$ commute. That is, $-a * b = b * -a$ if and only if $a * b = b * a$.
Commute.neg_one_right theorem
(a : R) : Commute a (-1)
Full source
theorem neg_one_right (a : R) : Commute a (-1) :=
  SemiconjBy.neg_one_right a
Negation Commutes with Any Element: $a * (-1) = (-1) * a$
Informal description
For any element $a$ in a ring $R$, the element $-1$ commutes with $a$, i.e., $a * (-1) = (-1) * a$.
Commute.neg_one_left theorem
(a : R) : Commute (-1) a
Full source
theorem neg_one_left (a : R) : Commute (-1) a :=
  SemiconjBy.neg_one_left a
Negation Commutes with Any Element: $-1 * a = a * -1$
Informal description
For any element $a$ in a multiplicative structure $R$ with distributive negation, the element $-1$ commutes with $a$, i.e., $-1 * a = a * -1$.
Commute.sub_right theorem
: Commute a b → Commute a c → Commute a (b - c)
Full source
@[simp]
theorem sub_right : Commute a b → Commute a c → Commute a (b - c) :=
  SemiconjBy.sub_right
Right Subtraction Preserves Commutativity: $a * (b - c) = (b - c) * a$ under commuting conditions
Informal description
For any elements $a$, $b$, and $c$ in a non-unital non-associative ring, if $a$ commutes with $b$ and $a$ commutes with $c$, then $a$ commutes with $b - c$, i.e., $a * (b - c) = (b - c) * a$.
Commute.sub_left theorem
: Commute a c → Commute b c → Commute (a - b) c
Full source
@[simp]
theorem sub_left : Commute a c → Commute b c → Commute (a - b) c :=
  SemiconjBy.sub_left
Left Subtraction Preserves Commutativity: \((a - b) * c = c * (a - b)\) when \(a\) and \(b\) commute with \(c\)
Informal description
For any elements \( a, b, c \) in a non-unital non-associative ring, if \( a \) commutes with \( c \) and \( b \) commutes with \( c \), then \( a - b \) commutes with \( c \), i.e., \((a - b) * c = c * (a - b)\).
Commute.sq_sub_sq theorem
(h : Commute a b) : a ^ 2 - b ^ 2 = (a + b) * (a - b)
Full source
protected lemma sq_sub_sq (h : Commute a b) : a ^ 2 - b ^ 2 = (a + b) * (a - b) := by
  rw [sq, sq, h.mul_self_sub_mul_self_eq]
Difference of Squares Identity for Commuting Elements: $a^2 - b^2 = (a+b)(a-b)$
Informal description
For any two commuting elements $a$ and $b$ in a non-unital non-associative ring, the difference of their squares equals the product of their sum and difference, i.e., \[ a^2 - b^2 = (a + b)(a - b). \]
Commute.sq_eq_sq_iff_eq_or_eq_neg theorem
(h : Commute a b) : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b
Full source
protected lemma sq_eq_sq_iff_eq_or_eq_neg (h : Commute a b) : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b := by
  rw [← sub_eq_zero, h.sq_sub_sq, mul_eq_zero, add_eq_zero_iff_eq_neg, sub_eq_zero, or_comm]
Squares of Commuting Elements are Equal iff Elements are Equal or Negatives: $a^2 = b^2 \leftrightarrow a = b \lor a = -b$
Informal description
For any two commuting elements $a$ and $b$ in a ring, the squares of $a$ and $b$ are equal if and only if $a = b$ or $a = -b$, i.e., \[ a^2 = b^2 \leftrightarrow a = b \lor a = -b. \]
neg_one_pow_eq_or theorem
: ∀ n : ℕ, (-1 : R) ^ n = 1 ∨ (-1 : R) ^ n = -1
Full source
lemma neg_one_pow_eq_or : ∀ n : , (-1 : R) ^ n = 1 ∨ (-1 : R) ^ n = -1
  | 0 => Or.inl (pow_zero _)
  | n + 1 => (neg_one_pow_eq_or n).symm.imp
    (fun h ↦ by rw [pow_succ, h, neg_one_mul, neg_neg])
    (fun h ↦ by rw [pow_succ, h, one_mul])
Alternating Powers of Negative One: $(-1)^n = \pm 1$
Informal description
For any natural number $n$, the $n$-th power of $-1$ in a ring $R$ is either $1$ or $-1$, i.e., $(-1)^n = 1$ or $(-1)^n = -1$.
neg_pow theorem
(a : R) (n : ℕ) : (-a) ^ n = (-1) ^ n * a ^ n
Full source
lemma neg_pow (a : R) (n : ) : (-a) ^ n = (-1) ^ n * a ^ n :=
  neg_one_mul a ▸ (Commute.neg_one_left a).mul_pow n
Power of Negative Element: $(-a)^n = (-1)^n a^n$
Informal description
For any element $a$ in a ring $R$ and any natural number $n$, the $n$-th power of $-a$ equals the product of $(-1)^n$ and $a^n$, i.e., $(-a)^n = (-1)^n \cdot a^n$.
neg_pow' theorem
(a : R) (n : ℕ) : (-a) ^ n = a ^ n * (-1) ^ n
Full source
lemma neg_pow' (a : R) (n : ) : (-a) ^ n = a ^ n * (-1) ^ n :=
  mul_neg_one a ▸ (Commute.neg_one_right a).mul_pow n
Power of Negative Element: $(-a)^n = a^n \cdot (-1)^n$
Informal description
For any element $a$ in a ring $R$ and any natural number $n$, the $n$-th power of $-a$ equals the product of the $n$-th power of $a$ and the $n$-th power of $-1$, i.e., $(-a)^n = a^n \cdot (-1)^n$.
neg_sq theorem
(a : R) : (-a) ^ 2 = a ^ 2
Full source
lemma neg_sq (a : R) : (-a) ^ 2 = a ^ 2 := by simp [sq]
Square of Negative Element: $(-a)^2 = a^2$
Informal description
For any element $a$ in a ring $R$, the square of $-a$ equals the square of $a$, i.e., $(-a)^2 = a^2$.
neg_one_sq theorem
: (-1 : R) ^ 2 = 1
Full source
lemma neg_one_sq : (-1 : R) ^ 2 = 1 := by simp [neg_sq, one_pow]
Square of Negative One: $(-1)^2 = 1$
Informal description
For any ring $R$, the square of the additive inverse of the multiplicative identity is equal to the multiplicative identity, i.e., $(-1)^2 = 1$.
neg_one_pow_mul_eq_zero_iff theorem
: (-1) ^ n * a = 0 ↔ a = 0
Full source
@[simp] lemma neg_one_pow_mul_eq_zero_iff : (-1) ^ n * a = 0 ↔ a = 0 := by
  rcases neg_one_pow_eq_or R n with h | h <;> simp [h]
Zero Product Property for $(-1)^n \cdot a$: $(-1)^n \cdot a = 0 \leftrightarrow a = 0$
Informal description
For any natural number $n$ and any element $a$ in a ring $R$, the product of $(-1)^n$ and $a$ is zero if and only if $a$ is zero, i.e., $(-1)^n \cdot a = 0 \leftrightarrow a = 0$.
mul_neg_one_pow_eq_zero_iff theorem
: a * (-1) ^ n = 0 ↔ a = 0
Full source
@[simp] lemma mul_neg_one_pow_eq_zero_iff : a * (-1) ^ n = 0 ↔ a = 0 := by
  obtain h | h := neg_one_pow_eq_or R n <;> simp [h]
Zero Product Property with Alternating Sign: $a \cdot (-1)^n = 0 \leftrightarrow a = 0$
Informal description
For any element $a$ in a ring $R$ and any natural number $n$, the product $a \cdot (-1)^n$ equals zero if and only if $a$ itself is zero, i.e., $a \cdot (-1)^n = 0 \leftrightarrow a = 0$.
neg_one_pow_eq_pow_mod_two theorem
(n : ℕ) : (-1 : R) ^ n = (-1) ^ (n % 2)
Full source
lemma neg_one_pow_eq_pow_mod_two (n : ) : (-1 : R) ^ n = (-1) ^ (n % 2) := by
  rw [← Nat.mod_add_div n 2, pow_add, pow_mul]; simp [sq]
Alternating Sign Power Law: $(-1)^n = (-1)^{n \bmod 2}$
Informal description
For any natural number $n$ and any ring $R$, the $n$-th power of $-1$ in $R$ equals the $k$-th power of $-1$, where $k$ is the remainder when $n$ is divided by 2, i.e., $(-1)^n = (-1)^{n \bmod 2}$.
sq_ne_one_iff theorem
: a ^ 2 ≠ 1 ↔ a ≠ 1 ∧ a ≠ -1
Full source
lemma sq_ne_one_iff : a ^ 2 ≠ 1a ^ 2 ≠ 1 ↔ a ≠ 1 ∧ a ≠ -1 := sq_eq_one_iff.not.trans not_or
Square Not Equal to One iff Not One or Negative One: $a^2 \neq 1 \leftrightarrow a \neq 1 \land a \neq -1$
Informal description
For any element $a$ in a ring, the square of $a$ is not equal to $1$ if and only if $a$ is neither $1$ nor $-1$, i.e., $a^2 \neq 1 \leftrightarrow a \neq 1 \land a \neq -1$.
mul_self_sub_mul_self theorem
[NonUnitalNonAssocCommRing R] (a b : R) : a * a - b * b = (a + b) * (a - b)
Full source
/-- Representation of a difference of two squares in a commutative ring as a product. -/
theorem mul_self_sub_mul_self [NonUnitalNonAssocCommRing R] (a b : R) :
    a * a - b * b = (a + b) * (a - b) :=
  (Commute.all a b).mul_self_sub_mul_self_eq
Difference of Squares Identity in Non-unital Non-associative Commutative Rings: $a^2 - b^2 = (a+b)(a-b)$
Informal description
Let $R$ be a non-unital non-associative commutative ring. For any elements $a, b \in R$, the difference of squares can be expressed as: \[ a^2 - b^2 = (a + b)(a - b) \]
mul_self_sub_one theorem
[NonAssocRing R] (a : R) : a * a - 1 = (a + 1) * (a - 1)
Full source
theorem mul_self_sub_one [NonAssocRing R] (a : R) : a * a - 1 = (a + 1) * (a - 1) := by
  rw [← (Commute.one_right a).mul_self_sub_mul_self_eq, mul_one]
Difference of Squares Identity: $a^2 - 1 = (a+1)(a-1)$ in a Non-Associative Ring
Informal description
For any element $a$ in a non-associative ring $R$, the difference of squares identity holds: \[ a^2 - 1 = (a + 1)(a - 1) \]
mul_self_eq_mul_self_iff theorem
[NonUnitalNonAssocCommRing R] [NoZeroDivisors R] {a b : R} : a * a = b * b ↔ a = b ∨ a = -b
Full source
theorem mul_self_eq_mul_self_iff [NonUnitalNonAssocCommRing R] [NoZeroDivisors R] {a b : R} :
    a * a = b * b ↔ a = b ∨ a = -b :=
  (Commute.all a b).mul_self_eq_mul_self_iff
Square Equality in Commutative Rings: $a^2 = b^2 \leftrightarrow a = b \lor a = -b$
Informal description
Let $R$ be a non-unital non-associative commutative ring with no zero divisors. For any elements $a, b \in R$, we have $a^2 = b^2$ if and only if $a = b$ or $a = -b$.
mul_self_eq_one_iff theorem
[NonAssocRing R] [NoZeroDivisors R] {a : R} : a * a = 1 ↔ a = 1 ∨ a = -1
Full source
theorem mul_self_eq_one_iff [NonAssocRing R] [NoZeroDivisors R] {a : R} :
    a * a = 1 ↔ a = 1 ∨ a = -1 := by
  rw [← (Commute.one_right a).mul_self_eq_mul_self_iff, mul_one]
Square Equals One iff Element is One or Negative One in Non-Associative Ring
Informal description
Let $R$ be a non-associative ring with no zero divisors. For any element $a \in R$, we have $a^2 = 1$ if and only if $a = 1$ or $a = -1$.
sq_sub_sq theorem
(a b : R) : a ^ 2 - b ^ 2 = (a + b) * (a - b)
Full source
lemma sq_sub_sq (a b : R) : a ^ 2 - b ^ 2 = (a + b) * (a - b) := (Commute.all a b).sq_sub_sq
Difference of Squares Identity: $a^2 - b^2 = (a+b)(a-b)$
Informal description
For any elements $a$ and $b$ in a ring $R$, the difference of their squares equals the product of their sum and difference, i.e., \[ a^2 - b^2 = (a + b)(a - b). \]
sub_sq theorem
(a b : R) : (a - b) ^ 2 = a ^ 2 - 2 * a * b + b ^ 2
Full source
lemma sub_sq (a b : R) : (a - b) ^ 2 = a ^ 2 - 2 * a * b + b ^ 2 := by
  rw [sub_eq_add_neg, add_sq, neg_sq, mul_neg, ← sub_eq_add_neg]
Square of Difference Formula: $(a - b)^2 = a^2 - 2ab + b^2$
Informal description
For any elements $a$ and $b$ in a commutative ring $R$, the square of their difference $(a - b)^2$ equals $a^2 - 2ab + b^2$.
sub_sq' theorem
(a b : R) : (a - b) ^ 2 = a ^ 2 + b ^ 2 - 2 * a * b
Full source
lemma sub_sq' (a b : R) : (a - b) ^ 2 = a ^ 2 + b ^ 2 - 2 * a * b := by
  rw [sub_eq_add_neg, add_sq', neg_sq, mul_neg, ← sub_eq_add_neg]
Square of Difference Formula (Rearranged): $(a - b)^2 = a^2 + b^2 - 2ab$
Informal description
For any elements $a$ and $b$ in a commutative ring $R$, the square of their difference $(a - b)^2$ equals $a^2 + b^2 - 2ab$.
sub_sq_comm theorem
(a b : R) : (a - b) ^ 2 = (b - a) ^ 2
Full source
lemma sub_sq_comm (a b : R) : (a - b) ^ 2 = (b - a) ^ 2 := by
  rw [sub_sq', mul_right_comm, add_comm, sub_sq']
Square of Difference is Commutative: $(a - b)^2 = (b - a)^2$
Informal description
For any elements $a$ and $b$ in a commutative ring $R$, the square of their difference $(a - b)^2$ is equal to the square of the reverse difference $(b - a)^2$.
sq_eq_sq_iff_eq_or_eq_neg theorem
: a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b
Full source
lemma sq_eq_sq_iff_eq_or_eq_neg : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b :=
  (Commute.all a b).sq_eq_sq_iff_eq_or_eq_neg
Square Equality in Commutative Rings: $a^2 = b^2 \leftrightarrow a = b \lor a = -b$
Informal description
For any two elements $a$ and $b$ in a commutative ring with no zero divisors, the squares of $a$ and $b$ are equal if and only if $a = b$ or $a = -b$, i.e., \[ a^2 = b^2 \leftrightarrow a = b \lor a = -b. \]
Units.sq_eq_sq_iff_eq_or_eq_neg theorem
{a b : Rˣ} : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b
Full source
protected lemma sq_eq_sq_iff_eq_or_eq_neg {a b : } : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b := by
  simp_rw [Units.ext_iff, val_pow_eq_pow_val, sq_eq_sq_iff_eq_or_eq_neg, Units.val_neg]
Square Equality for Units: $a^2 = b^2 \leftrightarrow a = b \lor a = -b$
Informal description
For any two units $a$ and $b$ in a commutative ring $R$ with no zero divisors, the squares of $a$ and $b$ are equal if and only if $a = b$ or $a = -b$. In other words, $a^2 = b^2 \leftrightarrow (a = b \lor a = -b)$.
Units.inv_eq_self_iff theorem
[Ring R] [NoZeroDivisors R] (u : Rˣ) : u⁻¹ = u ↔ u = 1 ∨ u = -1
Full source
/-- In the unit group of an integral domain, a unit is its own inverse iff the unit is one or
  one's additive inverse. -/
theorem inv_eq_self_iff [Ring R] [NoZeroDivisors R] (u : ) : u⁻¹u⁻¹ = u ↔ u = 1 ∨ u = -1 := by
  rw [inv_eq_iff_mul_eq_one]
  simp only [Units.ext_iff]
  push_cast
  exact mul_self_eq_one_iff
Unit is Self-Inverse iff it is One or Negative One in a Ring without Zero Divisors
Informal description
Let $R$ be a ring with no zero divisors, and let $u$ be a unit in $R$. Then the inverse of $u$ equals $u$ if and only if $u$ is the multiplicative identity $1$ or its additive inverse $-1$, i.e., $u^{-1} = u \leftrightarrow u = 1 \lor u = -1$.
Ring.instBracket instance
: Bracket R R
Full source
instance (priority := 100) instBracket : Bracket R R := ⟨fun x y => x * y - y * x⟩
The Commutator Bracket on a Ring
Informal description
For any ring $R$, there is a canonical bracket operation $\lbrack \cdot, \cdot \rbrack : R \times R \to R$ defined by $\lbrack x, y \rbrack = x y - y x$.
Ring.lie_def theorem
(x y : R) : ⁅x, y⁆ = x * y - y * x
Full source
theorem lie_def (x y : R) : ⁅x, y⁆ = x * y - y * x := rfl
Commutator Bracket Definition: $\lbrack x, y \rbrack = xy - yx$
Informal description
For any elements $x$ and $y$ in a ring $R$, the commutator bracket $\lbrack x, y \rbrack$ is equal to $x y - y x$.
commute_iff_lie_eq theorem
{x y : R} : Commute x y ↔ ⁅x, y⁆ = 0
Full source
theorem commute_iff_lie_eq {x y : R} : CommuteCommute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm
Commutativity Criterion via Commutator Bracket: $\text{Commute}(x,y) \leftrightarrow \lbrack x, y \rbrack = 0$
Informal description
Two elements $x$ and $y$ in a ring $R$ commute if and only if their commutator bracket $\lbrack x, y \rbrack = x y - y x$ equals zero. That is, $x$ and $y$ commute if and only if $\lbrack x, y \rbrack = 0$.
Commute.lie_eq theorem
{x y : R} (h : Commute x y) : ⁅x, y⁆ = 0
Full source
theorem Commute.lie_eq {x y : R} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h
Commutativity Implies Zero Commutator Bracket
Informal description
For any two elements $x$ and $y$ in a ring $R$ that commute (i.e., $x * y = y * x$), their commutator bracket satisfies $\lbrack x, y \rbrack = 0$.