Module docstring
{"# Centralizers of rings "}
{"# Centralizers of rings "}
Set.add_mem_centralizer
      theorem
     [Distrib M] (ha : a ∈ centralizer S) (hb : b ∈ centralizer S) : a + b ∈ centralizer S
        @[simp]
theorem add_mem_centralizer [Distrib M] (ha : a ∈ centralizer S) (hb : b ∈ centralizer S) :
    a + b ∈ centralizer S := fun c hc => by rw [add_mul, mul_add, ha c hc, hb c hc]
        Set.neg_mem_centralizer
      theorem
     [Mul M] [HasDistribNeg M] (ha : a ∈ centralizer S) : -a ∈ centralizer S
        @[simp]
theorem neg_mem_centralizer [Mul M] [HasDistribNeg M] (ha : a ∈ centralizer S) :
    -a ∈ centralizer S := fun c hc => by rw [mul_neg, ha c hc, neg_mul]