Module docstring
{"# Pointwise operations of sets in a ring
This file proves properties of pointwise operations of sets in a ring.
Tags
set multiplication, set addition, pointwise addition, pointwise multiplication, pointwise subtraction "}
{"# Pointwise operations of sets in a ring
This file proves properties of pointwise operations of sets in a ring.
set multiplication, set addition, pointwise addition, pointwise multiplication, pointwise subtraction "}
Set.smul_set_neg
theorem
: a • -t = -(a • t)
@[simp]
lemma smul_set_neg : a • -t = -(a • t) := by
simp_rw [← image_smul, ← image_neg_eq_neg, image_image, smul_neg]
Set.smul_neg
theorem
: s • -t = -(s • t)
@[simp]
protected lemma smul_neg : s • -t = -(s • t) := by
simp_rw [← image_neg_eq_neg]
exact image_image2_right_comm smul_neg
Set.add_smul_subset
theorem
(a b : α) (s : Set β) : (a + b) • s ⊆ a • s + b • s
lemma add_smul_subset (a b : α) (s : Set β) : (a + b) • s ⊆ a • s + b • s := by
rintro _ ⟨x, hx, rfl⟩
simpa only [add_smul] using add_mem_add (smul_mem_smul_set hx) (smul_mem_smul_set hx)
Set.neg_smul_set
theorem
: -a • t = -(a • t)
@[simp]
lemma neg_smul_set : -a • t = -(a • t) := by
simp_rw [← image_smul, ← image_neg_eq_neg, image_image, neg_smul]
Set.neg_smul
theorem
: -s • t = -(s • t)
@[simp]
protected lemma neg_smul : -s • t = -(s • t) := by
simp_rw [← image_neg_eq_neg]
exact image2_image_left_comm neg_smul