Module docstring
{"# PartialSups in a SuccAddOrder
"}
{"# PartialSups in a SuccAddOrder
"}
partialSups_add_one
theorem
[Add ι] [One ι] [LinearOrder ι] [LocallyFiniteOrderBot ι] [SuccAddOrder ι] (f : ι → α) (i : ι) :
partialSups f (i + 1) = partialSups f i ⊔ f (i + 1)
@[simp]
lemma partialSups_add_one [Add ι] [One ι] [LinearOrder ι] [LocallyFiniteOrderBot ι] [SuccAddOrder ι]
(f : ι → α) (i : ι) : partialSups f (i + 1) = partialSupspartialSups f i ⊔ f (i + 1) :=
Order.succ_eq_add_one i ▸ partialSups_succ f i