doc-next-gen

Mathlib.Algebra.Order.Monoid.Unbundled.Pow

Module docstring

{"# Lemmas about the interaction of power operations with order in terms of CovariantClass "}

Left.one_le_pow_of_le theorem
(ha : 1 ≤ a) : ∀ n : ℕ, 1 ≤ a ^ n
Full source
@[to_additive Left.nsmul_nonneg]
theorem one_le_pow_of_le (ha : 1 ≤ a) : ∀ n : , 1 ≤ a ^ n
  | 0 => by simp
  | k + 1 => by
    rw [pow_succ]
    exact one_le_mul (one_le_pow_of_le ha k) ha
Monotonicity of Powers: $1 \leq a$ implies $1 \leq a^n$ for all $n \in \mathbb{N}$
Informal description
For any element $a$ in a monoid $M$ with a preorder and left-monotone multiplication, if $1 \leq a$, then for all natural numbers $n$, we have $1 \leq a^n$.
Left.pow_le_one_of_le theorem
(ha : a ≤ 1) (n : ℕ) : a ^ n ≤ 1
Full source
@[to_additive nsmul_nonpos]
theorem pow_le_one_of_le (ha : a ≤ 1) (n : ) : a ^ n ≤ 1 := one_le_pow_of_le (M := Mᵒᵈ) ha n
Monotonicity of Powers: $a \leq 1$ implies $a^n \leq 1$ for all $n \in \mathbb{N}$
Informal description
For any element $a$ in a monoid $M$ with a preorder and left-monotone multiplication, if $a \leq 1$, then for any natural number $n$, we have $a^n \leq 1$.
Left.pow_lt_one_of_lt theorem
{a : M} {n : ℕ} (h : a < 1) (hn : n ≠ 0) : a ^ n < 1
Full source
@[to_additive nsmul_neg]
theorem pow_lt_one_of_lt {a : M} {n : } (h : a < 1) (hn : n ≠ 0) : a ^ n < 1 := by
  rcases Nat.exists_eq_succ_of_ne_zero hn with ⟨k, rfl⟩
  rw [pow_succ']
  exact mul_lt_one_of_lt_of_le h (pow_le_one_of_le h.le _)
Strict Inequality for Powers: $a < 1$ implies $a^n < 1$ for $n \neq 0$
Informal description
For any element $a$ in a monoid $M$ with a preorder and left-monotone multiplication, if $a < 1$ and $n$ is a nonzero natural number, then $a^n < 1$.
pow_right_monotone theorem
(ha : 1 ≤ a) : Monotone fun n : ℕ ↦ a ^ n
Full source
@[to_additive nsmul_left_monotone]
theorem pow_right_monotone (ha : 1 ≤ a) : Monotone fun n :  ↦ a ^ n :=
  monotone_nat_of_le_succ fun n ↦ by rw [pow_succ]; exact le_mul_of_one_le_right' ha
Monotonicity of Powers for $a \geq 1$: $n \mapsto a^n$ is increasing
Informal description
For any element $a$ in a monoid $M$ with a preorder and left-monotone multiplication, if $1 \leq a$, then the function $n \mapsto a^n$ is monotone. That is, for any natural numbers $n \leq m$, we have $a^n \leq a^m$.
pow_le_pow_right' theorem
{n m : ℕ} (ha : 1 ≤ a) (h : n ≤ m) : a ^ n ≤ a ^ m
Full source
@[to_additive (attr := gcongr) nsmul_le_nsmul_left]
theorem pow_le_pow_right' {n m : } (ha : 1 ≤ a) (h : n ≤ m) : a ^ n ≤ a ^ m :=
  pow_right_monotone ha h
Monotonicity of Powers: $1 \leq a$ and $n \leq m$ implies $a^n \leq a^m$
Informal description
For any element $a$ in a monoid $M$ with a preorder and left-monotone multiplication, if $1 \leq a$ and $n \leq m$ are natural numbers, then $a^n \leq a^m$.
pow_le_pow_right_of_le_one' theorem
{n m : ℕ} (ha : a ≤ 1) (h : n ≤ m) : a ^ m ≤ a ^ n
Full source
@[to_additive nsmul_le_nsmul_left_of_nonpos]
theorem pow_le_pow_right_of_le_one' {n m : } (ha : a ≤ 1) (h : n ≤ m) : a ^ m ≤ a ^ n :=
  pow_le_pow_right' (M := Mᵒᵈ) ha h
Antitonicity of Powers for $a \leq 1$: $n \leq m$ implies $a^m \leq a^n$
Informal description
For any element $a$ in a monoid $M$ with a preorder and left-monotone multiplication, if $a \leq 1$ and $n \leq m$ are natural numbers, then $a^m \leq a^n$.
one_lt_pow' theorem
(ha : 1 < a) {k : ℕ} (hk : k ≠ 0) : 1 < a ^ k
Full source
@[to_additive nsmul_pos]
theorem one_lt_pow' (ha : 1 < a) {k : } (hk : k ≠ 0) : 1 < a ^ k :=
  pow_lt_one' (M := Mᵒᵈ) ha hk
One is Less Than Positive Power of Element Greater Than One
Informal description
For any element $a$ in a monoid $M$ with a preorder and left-monotone multiplication, if $1 < a$ and $k$ is a nonzero natural number, then $1 < a^k$.
le_self_pow theorem
(ha : 1 ≤ a) (hn : n ≠ 0) : a ≤ a ^ n
Full source
@[to_additive]
lemma le_self_pow (ha : 1 ≤ a) (hn : n ≠ 0) : a ≤ a ^ n := by
  simpa using pow_le_pow_right' ha (Nat.one_le_iff_ne_zero.2 hn)
Element Bounded by Its Own Power: $a \leq a^n$ when $1 \leq a$ and $n \neq 0$
Informal description
For any element $a$ in a monoid $M$ with a preorder, if $1 \leq a$ and $n$ is a nonzero natural number, then $a \leq a^n$.
pow_right_strictMono' theorem
(ha : 1 < a) : StrictMono ((a ^ ·) : ℕ → M)
Full source
@[to_additive nsmul_left_strictMono]
theorem pow_right_strictMono' (ha : 1 < a) : StrictMono ((a ^ ·) :  → M) :=
  strictMono_nat_of_lt_succ fun n ↦ by rw [pow_succ]; exact lt_mul_of_one_lt_right' (a ^ n) ha
Strict Monotonicity of Powers: $n \mapsto a^n$ is strictly increasing when $1 < a$
Informal description
For any element $a$ in a monoid $M$ with a preorder such that $1 < a$, the function $n \mapsto a^n$ is strictly increasing on the natural numbers $\mathbb{N}$.
pow_lt_pow_right' theorem
(ha : 1 < a) (h : n < m) : a ^ n < a ^ m
Full source
@[to_additive (attr := gcongr) nsmul_lt_nsmul_left]
theorem pow_lt_pow_right' (ha : 1 < a) (h : n < m) : a ^ n < a ^ m :=
  pow_right_strictMono' ha h
Strict Monotonicity of Powers: $a^n < a^m$ when $1 < a$ and $n < m$
Informal description
For any element $a$ in a monoid $M$ with a preorder such that $1 < a$, and for any natural numbers $n < m$, we have $a^n < a^m$.
Right.one_le_pow_of_le theorem
(hx : 1 ≤ x) : ∀ {n : ℕ}, 1 ≤ x ^ n
Full source
@[to_additive Right.nsmul_nonneg]
theorem Right.one_le_pow_of_le (hx : 1 ≤ x) : ∀ {n : }, 1 ≤ x ^ n
  | 0 => (pow_zero _).ge
  | n + 1 => by
    rw [pow_succ]
    exact Right.one_le_mul (Right.one_le_pow_of_le hx) hx
Monotonicity of Powers: $1 \leq x$ implies $1 \leq x^n$ for all $n \in \mathbb{N}$
Informal description
For any element $x$ in a monoid $M$ with a preorder such that right multiplication is monotone, if $1 \leq x$, then for any natural number $n$, we have $1 \leq x^n$.
Right.pow_le_one_of_le theorem
(hx : x ≤ 1) {n : ℕ} : x ^ n ≤ 1
Full source
@[to_additive Right.nsmul_nonpos]
theorem Right.pow_le_one_of_le (hx : x ≤ 1) {n : } : x ^ n ≤ 1 :=
  Right.one_le_pow_of_le (M := Mᵒᵈ) hx
Monotonicity of Powers: $x \leq 1$ implies $x^n \leq 1$ for all $n \in \mathbb{N}$
Informal description
For any element $x$ in a monoid $M$ with a preorder such that right multiplication is monotone, if $x \leq 1$, then for any natural number $n$, we have $x^n \leq 1$.
Right.pow_lt_one_of_lt theorem
{n : ℕ} {x : M} (hn : 0 < n) (h : x < 1) : x ^ n < 1
Full source
@[to_additive Right.nsmul_neg]
theorem Right.pow_lt_one_of_lt {n : } {x : M} (hn : 0 < n) (h : x < 1) : x ^ n < 1 := by
  rcases Nat.exists_eq_succ_of_ne_zero hn.ne' with ⟨k, rfl⟩
  rw [pow_succ]
  exact mul_lt_one_of_le_of_lt (pow_le_one_of_le h.le) h
Strict Inequality for Powers: $x < 1$ implies $x^n < 1$ for $n > 0$
Informal description
Let $M$ be a monoid with a preorder such that right multiplication is monotone. For any element $x \in M$ and natural number $n > 0$, if $x < 1$, then $x^n < 1$.
pow_le_pow_mul_of_sq_le_mul theorem
[MulLeftMono M] {a b : M} (hab : a ^ 2 ≤ b * a) : ∀ {n}, n ≠ 0 → a ^ n ≤ b ^ (n - 1) * a
Full source
/-- This lemma is useful in non-cancellative monoids, like sets under pointwise operations. -/
@[to_additive
"This lemma is useful in non-cancellative monoids, like sets under pointwise operations."]
lemma pow_le_pow_mul_of_sq_le_mul [MulLeftMono M] {a b : M} (hab : a ^ 2 ≤ b * a) :
    ∀ {n}, n ≠ 0 → a ^ n ≤ b ^ (n - 1) * a
  | 1, _ => by simp
  | n + 2, _ => by
    calc
      a ^ (n + 2) = a ^ (n + 1) * a := by rw [pow_succ]
      _ ≤ b ^ n * a * a := mul_le_mul_right' (pow_le_pow_mul_of_sq_le_mul hab (by omega)) _
      _ = b ^ n * a ^ 2 := by rw [mul_assoc, sq]
      _ ≤ b ^ n * (b * a) := mul_le_mul_left' hab _
      _ = b ^ (n + 1) * a := by rw [← mul_assoc, ← pow_succ]
Power Inequality in Monoids: $a^n \leq b^{n-1} \cdot a$ under $a^2 \leq b \cdot a$
Informal description
Let $M$ be a monoid with a preorder such that left multiplication is monotone. For any elements $a, b \in M$ satisfying $a^2 \leq b \cdot a$, and for any natural number $n \neq 0$, we have $a^n \leq b^{n-1} \cdot a$.
StrictMono.pow_const theorem
(hf : StrictMono f) : ∀ {n : ℕ}, n ≠ 0 → StrictMono (f · ^ n)
Full source
@[to_additive StrictMono.const_nsmul]
theorem StrictMono.pow_const (hf : StrictMono f) : ∀ {n : }, n ≠ 0StrictMono (f · ^ n)
  | 0, hn => (hn rfl).elim
  | 1, _ => by simpa
  | Nat.succ <| Nat.succ n, _ => by
    simpa only [pow_succ] using (hf.pow_const n.succ_ne_zero).mul' hf
Strict Monotonicity of Powers of Strictly Monotone Functions
Informal description
Let $f : \alpha \to M$ be a strictly monotone function from a preorder $\alpha$ to a monoid $M$ with a strict order. For any natural number $n \neq 0$, the function $x \mapsto (f(x))^n$ is strictly monotone.
pow_left_strictMono theorem
(hn : n ≠ 0) : StrictMono (· ^ n : M → M)
Full source
/-- See also `pow_left_strictMonoOn₀`. -/
@[to_additive nsmul_right_strictMono]
theorem pow_left_strictMono (hn : n ≠ 0) : StrictMono (· ^ n : M → M) := strictMono_id.pow_const hn
Strict Monotonicity of Power Function: $x^n$ is strictly increasing for $n \neq 0$
Informal description
For any monoid $M$ with a strict order $<$ and any nonzero natural number $n$, the function $x \mapsto x^n$ is strictly monotone. That is, for any $a, b \in M$, if $a < b$ then $a^n < b^n$.
pow_lt_pow_left' theorem
(hn : n ≠ 0) {a b : M} (hab : a < b) : a ^ n < b ^ n
Full source
@[to_additive (attr := mono, gcongr) nsmul_lt_nsmul_right]
lemma pow_lt_pow_left' (hn : n ≠ 0) {a b : M} (hab : a < b) : a ^ n < b ^ n :=
  pow_left_strictMono hn hab
Strict Monotonicity of Powers: $a < b \implies a^n < b^n$ for $n \neq 0$
Informal description
For any monoid $M$ with a strict order $<$ and any nonzero natural number $n$, if $a < b$ for elements $a, b \in M$, then $a^n < b^n$.
pow_le_pow_left' theorem
{a b : M} (hab : a ≤ b) : ∀ i : ℕ, a ^ i ≤ b ^ i
Full source
@[to_additive (attr := mono, gcongr) nsmul_le_nsmul_right]
theorem pow_le_pow_left' {a b : M} (hab : a ≤ b) : ∀ i : , a ^ i ≤ b ^ i
  | 0 => by simp
  | k + 1 => by
    rw [pow_succ, pow_succ]
    exact mul_le_mul' (pow_le_pow_left' hab k) hab
Monotonicity of Powers: $a \leq b \implies a^i \leq b^i$ for all $i \in \mathbb{N}$
Informal description
For any elements $a$ and $b$ in a monoid $M$ with a preorder $\leq$, if $a \leq b$, then for every natural number $i$, the $i$-th power of $a$ is less than or equal to the $i$-th power of $b$, i.e., $a^i \leq b^i$.
Monotone.pow_const theorem
{f : β → M} (hf : Monotone f) : ∀ n : ℕ, Monotone fun a => f a ^ n
Full source
@[to_additive Monotone.const_nsmul]
theorem Monotone.pow_const {f : β → M} (hf : Monotone f) : ∀ n : , Monotone fun a => f a ^ n
  | 0 => by simpa using monotone_const
  | n + 1 => by
    simp_rw [pow_succ]
    exact (Monotone.pow_const hf _).mul' hf
Monotonicity of Powers of Monotone Functions: $f$ monotone implies $f^n$ monotone for all $n \in \mathbb{N}$
Informal description
Let $M$ be a monoid with a preorder $\leq$, and let $f : \beta \to M$ be a monotone function. Then for every natural number $n$, the function $a \mapsto f(a)^n$ is also monotone. That is, for any $a, b \in \beta$, if $a \leq b$, then $f(a)^n \leq f(b)^n$.
pow_left_mono theorem
(n : ℕ) : Monotone fun a : M => a ^ n
Full source
@[to_additive nsmul_right_mono]
theorem pow_left_mono (n : ) : Monotone fun a : M => a ^ n := monotone_id.pow_const _
Monotonicity of Power Function: $a \leq b \implies a^n \leq b^n$
Informal description
For any monoid $M$ with a preorder $\leq$ and any natural number $n$, the function $a \mapsto a^n$ is monotone. That is, for any $a, b \in M$, if $a \leq b$, then $a^n \leq b^n$.
pow_le_pow theorem
{a b : M} (hab : a ≤ b) (ht : 1 ≤ b) {m n : ℕ} (hmn : m ≤ n) : a ^ m ≤ b ^ n
Full source
@[to_additive (attr := gcongr)]
lemma pow_le_pow {a b : M} (hab : a ≤ b) (ht : 1 ≤ b) {m n : } (hmn : m ≤ n) : a ^ m ≤ b ^ n :=
  (pow_le_pow_left' hab _).trans (pow_le_pow_right' ht hmn)
Monotonicity of Powers: $a \leq b$ and $1 \leq b$ implies $a^m \leq b^n$ for $m \leq n$
Informal description
Let $M$ be a monoid with a preorder $\leq$. For any elements $a, b \in M$ such that $a \leq b$ and $1 \leq b$, and for any natural numbers $m, n$ with $m \leq n$, we have $a^m \leq b^n$.
le_pow_sup theorem
: a ^ n ⊔ b ^ n ≤ (a ⊔ b) ^ n
Full source
lemma le_pow_sup : a ^ n ⊔ b ^ n ≤ (a ⊔ b) ^ n :=
  sup_le (pow_le_pow_left' le_sup_left _) (pow_le_pow_left' le_sup_right _)
Supremum of Powers is Bounded by Power of Supremum: $a^n \sqcup b^n \leq (a \sqcup b)^n$
Informal description
For any elements $a$ and $b$ in a monoid $M$ equipped with a join-semilattice structure, and for any natural number $n$, the supremum of the $n$-th powers of $a$ and $b$ is less than or equal to the $n$-th power of their supremum, i.e., $a^n \sqcup b^n \leq (a \sqcup b)^n$.
pow_inf_le theorem
: (a ⊓ b) ^ n ≤ a ^ n ⊓ b ^ n
Full source
lemma pow_inf_le : (a ⊓ b) ^ n ≤ a ^ n ⊓ b ^ n :=
  le_inf (pow_le_pow_left' inf_le_left _) (pow_le_pow_left' inf_le_right _)
Power of Infimum is Bounded by Infimum of Powers: $(a \sqcap b)^n \leq a^n \sqcap b^n$
Informal description
For any elements $a$ and $b$ in a meet-semilattice with a monoid structure, and for any natural number $n$, the $n$-th power of the infimum $a \sqcap b$ is less than or equal to the infimum of the $n$-th powers of $a$ and $b$, i.e., $(a \sqcap b)^n \leq a^n \sqcap b^n$.
one_le_pow_iff theorem
{x : M} {n : ℕ} (hn : n ≠ 0) : 1 ≤ x ^ n ↔ 1 ≤ x
Full source
@[to_additive nsmul_nonneg_iff]
theorem one_le_pow_iff {x : M} {n : } (hn : n ≠ 0) : 1 ≤ x ^ n ↔ 1 ≤ x :=
  ⟨le_imp_le_of_lt_imp_lt fun h => pow_lt_one' h hn, fun h => one_le_pow_of_one_le' h n⟩
Characterization of $1 \leq x^n$ in Monoids: $1 \leq x^n \leftrightarrow 1 \leq x$ for $n \neq 0$
Informal description
For any element $x$ in a monoid $M$ and any nonzero natural number $n$, the inequality $1 \leq x^n$ holds if and only if $1 \leq x$.
pow_le_one_iff theorem
{x : M} {n : ℕ} (hn : n ≠ 0) : x ^ n ≤ 1 ↔ x ≤ 1
Full source
@[to_additive]
theorem pow_le_one_iff {x : M} {n : } (hn : n ≠ 0) : x ^ n ≤ 1 ↔ x ≤ 1 :=
  one_le_pow_iff (M := Mᵒᵈ) hn
Characterization of $x^n \leq 1$ in Monoids: $x^n \leq 1 \leftrightarrow x \leq 1$ for $n \neq 0$
Informal description
For any element $x$ in a monoid $M$ and any nonzero natural number $n$, the inequality $x^n \leq 1$ holds if and only if $x \leq 1$.
one_lt_pow_iff theorem
{x : M} {n : ℕ} (hn : n ≠ 0) : 1 < x ^ n ↔ 1 < x
Full source
@[to_additive nsmul_pos_iff]
theorem one_lt_pow_iff {x : M} {n : } (hn : n ≠ 0) : 1 < x ^ n ↔ 1 < x :=
  lt_iff_lt_of_le_iff_le (pow_le_one_iff hn)
Characterization of $1 < x^n$ in Monoids: $1 < x^n \leftrightarrow 1 < x$ for $n \neq 0$
Informal description
For any element $x$ in a monoid $M$ and any nonzero natural number $n$, the strict inequality $1 < x^n$ holds if and only if $1 < x$.
pow_lt_one_iff theorem
{x : M} {n : ℕ} (hn : n ≠ 0) : x ^ n < 1 ↔ x < 1
Full source
@[to_additive]
theorem pow_lt_one_iff {x : M} {n : } (hn : n ≠ 0) : x ^ n < 1 ↔ x < 1 :=
  lt_iff_lt_of_le_iff_le (one_le_pow_iff hn)
Characterization of $x^n < 1$ in Monoids: $x^n < 1 \leftrightarrow x < 1$ for $n \neq 0$
Informal description
For any element $x$ in a monoid $M$ and any nonzero natural number $n$, the inequality $x^n < 1$ holds if and only if $x < 1$.
pow_le_pow_iff_right' theorem
(ha : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n
Full source
@[to_additive nsmul_le_nsmul_iff_left]
theorem pow_le_pow_iff_right' (ha : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n :=
  (pow_right_strictMono' ha).le_iff_le
Monotonicity of Powers: $a^m \leq a^n \leftrightarrow m \leq n$ when $1 < a$
Informal description
For any element $a$ in a monoid $M$ with a linear order such that $1 < a$, and for any natural numbers $m$ and $n$, the inequality $a^m \leq a^n$ holds if and only if $m \leq n$.
pow_lt_pow_iff_right' theorem
(ha : 1 < a) : a ^ m < a ^ n ↔ m < n
Full source
@[to_additive nsmul_lt_nsmul_iff_left]
theorem pow_lt_pow_iff_right' (ha : 1 < a) : a ^ m < a ^ n ↔ m < n :=
  (pow_right_strictMono' ha).lt_iff_lt
Strict Monotonicity of Powers: $a^m < a^n \leftrightarrow m < n$ when $1 < a$
Informal description
For any element $a$ in a monoid $M$ with a linear order such that $1 < a$, and for any natural numbers $m$ and $n$, the inequality $a^m < a^n$ holds if and only if $m < n$.
lt_of_pow_lt_pow_left' theorem
{a b : M} (n : ℕ) : a ^ n < b ^ n → a < b
Full source
@[to_additive lt_of_nsmul_lt_nsmul_right]
theorem lt_of_pow_lt_pow_left' {a b : M} (n : ) : a ^ n < b ^ n → a < b :=
  (pow_left_mono _).reflect_lt
Strict inequality preserved under powers: $a^n < b^n \implies a < b$
Informal description
Let $M$ be a monoid with a linear order such that multiplication is monotone in both arguments. For any elements $a, b \in M$ and natural number $n$, if $a^n < b^n$, then $a < b$.
min_lt_of_mul_lt_sq theorem
{a b c : M} (h : a * b < c ^ 2) : min a b < c
Full source
@[to_additive min_lt_of_add_lt_two_nsmul]
theorem min_lt_of_mul_lt_sq {a b c : M} (h : a * b < c ^ 2) : min a b < c := by
  simpa using min_lt_max_of_mul_lt_mul (h.trans_eq <| pow_two _)
Minimum Bound from Product-Square Inequality: $\min(a,b) < c$ when $a \cdot b < c^2$
Informal description
For any elements $a, b, c$ in a monoid $M$ with a linear order and monotone multiplication, if the product $a \cdot b$ is strictly less than the square $c^2$, then the minimum of $a$ and $b$ is strictly less than $c$.
lt_max_of_sq_lt_mul theorem
{a b c : M} (h : a ^ 2 < b * c) : a < max b c
Full source
@[to_additive lt_max_of_two_nsmul_lt_add]
theorem lt_max_of_sq_lt_mul {a b c : M} (h : a ^ 2 < b * c) : a < max b c := by
  simpa using min_lt_max_of_mul_lt_mul ((pow_two _).symm.trans_lt h)
Square-Strict-Multiplication Implies Less Than Maximum: $a^2 < b \cdot c \Rightarrow a < \max(b, c)$
Informal description
Let $M$ be a monoid with a linear order such that multiplication is both left-monotone and right-monotone. For any elements $a, b, c \in M$, if $a^2 < b \cdot c$, then $a$ is less than the maximum of $b$ and $c$, i.e., $a < \max(b, c)$.
le_of_pow_le_pow_left' theorem
{a b : M} {n : ℕ} (hn : n ≠ 0) : a ^ n ≤ b ^ n → a ≤ b
Full source
@[to_additive le_of_nsmul_le_nsmul_right]
theorem le_of_pow_le_pow_left' {a b : M} {n : } (hn : n ≠ 0) : a ^ n ≤ b ^ n → a ≤ b :=
  (pow_left_strictMono hn).le_iff_le.1
Strictly Monotone Power Implies Order: $a^n \leq b^n \Rightarrow a \leq b$ for $n \neq 0$
Informal description
Let $M$ be a monoid with a linear order such that multiplication is strictly monotone (both left and right). For any elements $a, b \in M$ and nonzero natural number $n$, if $a^n \leq b^n$, then $a \leq b$.
min_le_of_mul_le_sq theorem
{a b c : M} (h : a * b ≤ c ^ 2) : min a b ≤ c
Full source
@[to_additive min_le_of_add_le_two_nsmul]
theorem min_le_of_mul_le_sq {a b c : M} (h : a * b ≤ c ^ 2) : min a b ≤ c := by
  simpa using min_le_max_of_mul_le_mul (h.trans_eq <| pow_two _)
Minimum Bound from Product-Square Inequality: $\min(a, b) \leq c$ when $a \cdot b \leq c^2$
Informal description
For any elements $a, b, c$ in a monoid $M$ with strictly monotone multiplication (both left and right), if $a \cdot b \leq c^2$, then the minimum of $a$ and $b$ is less than or equal to $c$.
le_max_of_sq_le_mul theorem
{a b c : M} (h : a ^ 2 ≤ b * c) : a ≤ max b c
Full source
@[to_additive le_max_of_two_nsmul_le_add]
theorem le_max_of_sq_le_mul {a b c : M} (h : a ^ 2 ≤ b * c) : a ≤ max b c := by
  simpa using min_le_max_of_mul_le_mul ((pow_two _).symm.trans_le h)
Maximum Bound from Square Inequality: $a^2 \leq b \cdot c \implies a \leq \max(b, c)$
Informal description
Let $M$ be a monoid with a linear order such that multiplication is both left and right strictly monotone. For any elements $a, b, c \in M$, if $a^2 \leq b \cdot c$, then $a \leq \max(b, c)$.
Left.pow_lt_one_iff' theorem
[MulLeftStrictMono M] {n : ℕ} {x : M} (hn : 0 < n) : x ^ n < 1 ↔ x < 1
Full source
@[to_additive Left.nsmul_neg_iff]
theorem Left.pow_lt_one_iff' [MulLeftStrictMono M] {n : } {x : M} (hn : 0 < n) :
    x ^ n < 1 ↔ x < 1 :=
  haveI := mulLeftMono_of_mulLeftStrictMono M
  pow_lt_one_iff hn.ne'
Strict Inequality for Powers under Left-Monotone Multiplication: $x^n < 1 \leftrightarrow x < 1$ for $n > 0$
Informal description
Let $M$ be a monoid with a linear order such that left multiplication is strictly monotone. For any element $x \in M$ and any positive natural number $n$, we have $x^n < 1$ if and only if $x < 1$.
Left.pow_lt_one_iff theorem
[MulLeftStrictMono M] {n : ℕ} {x : M} (hn : 0 < n) : x ^ n < 1 ↔ x < 1
Full source
theorem Left.pow_lt_one_iff [MulLeftStrictMono M] {n : } {x : M} (hn : 0 < n) :
    x ^ n < 1 ↔ x < 1 := Left.pow_lt_one_iff' hn
Strict Inequality for Powers under Left-Monotone Multiplication: $x^n < 1 \leftrightarrow x < 1$ for $n > 0$
Informal description
Let $M$ be a monoid with a linear order such that left multiplication is strictly monotone. For any element $x \in M$ and any positive natural number $n$, we have $x^n < 1$ if and only if $x < 1$.
Right.pow_lt_one_iff theorem
[MulRightStrictMono M] {n : ℕ} {x : M} (hn : 0 < n) : x ^ n < 1 ↔ x < 1
Full source
@[to_additive]
theorem Right.pow_lt_one_iff [MulRightStrictMono M] {n : } {x : M}
    (hn : 0 < n) : x ^ n < 1 ↔ x < 1 :=
  haveI := mulRightMono_of_mulRightStrictMono M
  ⟨fun H => not_le.mp fun k => H.not_le <| Right.one_le_pow_of_le k, Right.pow_lt_one_of_lt hn⟩
Strict Inequality for Powers: $x^n < 1 \leftrightarrow x < 1$ for $n > 0$
Informal description
Let $M$ be a monoid with a strict right-monotone multiplication operation. For any natural number $n > 0$ and any element $x \in M$, we have $x^n < 1$ if and only if $x < 1$.
one_le_zpow theorem
{x : G} (H : 1 ≤ x) {n : ℤ} (hn : 0 ≤ n) : 1 ≤ x ^ n
Full source
@[to_additive zsmul_nonneg]
theorem one_le_zpow {x : G} (H : 1 ≤ x) {n : } (hn : 0 ≤ n) : 1 ≤ x ^ n := by
  lift n to  using hn
  rw [zpow_natCast]
  apply one_le_pow_of_one_le' H
Nonnegative integer powers preserve order from one
Informal description
Let $G$ be a division-inversion monoid. For any element $x \in G$ such that $1 \leq x$ and any integer $n \geq 0$, we have $1 \leq x^n$.