Module docstring
{"# Algebraic properties of finset intervals
This file provides results about the interaction of algebra with Finset.Ixx.
"}
{"# Algebraic properties of finset intervals
This file provides results about the interaction of algebra with Finset.Ixx.
"}
Finset.map_add_left_Icc
      theorem
     (a b c : α) : (Icc a b).map (addLeftEmbedding c) = Icc (c + a) (c + b)
        @[simp] lemma map_add_left_Icc (a b c : α) :
    (Icc a b).map (addLeftEmbedding c) = Icc (c + a) (c + b) := by
  rw [← coe_inj, coe_map, coe_Icc, coe_Icc]
  exact Set.image_const_add_Icc _ _ _
        Finset.map_add_right_Icc
      theorem
     (a b c : α) : (Icc a b).map (addRightEmbedding c) = Icc (a + c) (b + c)
        @[simp] lemma map_add_right_Icc (a b c : α) :
    (Icc a b).map (addRightEmbedding c) = Icc (a + c) (b + c) := by
  rw [← coe_inj, coe_map, coe_Icc, coe_Icc]
  exact Set.image_add_const_Icc _ _ _
        Finset.map_add_left_Ico
      theorem
     (a b c : α) : (Ico a b).map (addLeftEmbedding c) = Ico (c + a) (c + b)
        @[simp] lemma map_add_left_Ico (a b c : α) :
    (Ico a b).map (addLeftEmbedding c) = Ico (c + a) (c + b) := by
  rw [← coe_inj, coe_map, coe_Ico, coe_Ico]
  exact Set.image_const_add_Ico _ _ _
        Finset.map_add_right_Ico
      theorem
     (a b c : α) : (Ico a b).map (addRightEmbedding c) = Ico (a + c) (b + c)
        @[simp] lemma map_add_right_Ico (a b c : α) :
    (Ico a b).map (addRightEmbedding c) = Ico (a + c) (b + c) := by
  rw [← coe_inj, coe_map, coe_Ico, coe_Ico]
  exact Set.image_add_const_Ico _ _ _
        Finset.map_add_left_Ioc
      theorem
     (a b c : α) : (Ioc a b).map (addLeftEmbedding c) = Ioc (c + a) (c + b)
        @[simp] lemma map_add_left_Ioc (a b c : α) :
    (Ioc a b).map (addLeftEmbedding c) = Ioc (c + a) (c + b) := by
  rw [← coe_inj, coe_map, coe_Ioc, coe_Ioc]
  exact Set.image_const_add_Ioc _ _ _
        Finset.map_add_right_Ioc
      theorem
     (a b c : α) : (Ioc a b).map (addRightEmbedding c) = Ioc (a + c) (b + c)
        @[simp] lemma map_add_right_Ioc (a b c : α) :
    (Ioc a b).map (addRightEmbedding c) = Ioc (a + c) (b + c) := by
  rw [← coe_inj, coe_map, coe_Ioc, coe_Ioc]
  exact Set.image_add_const_Ioc _ _ _
        Finset.map_add_left_Ioo
      theorem
     (a b c : α) : (Ioo a b).map (addLeftEmbedding c) = Ioo (c + a) (c + b)
        @[simp] lemma map_add_left_Ioo (a b c : α) :
    (Ioo a b).map (addLeftEmbedding c) = Ioo (c + a) (c + b) := by
  rw [← coe_inj, coe_map, coe_Ioo, coe_Ioo]
  exact Set.image_const_add_Ioo _ _ _
        Finset.map_add_right_Ioo
      theorem
     (a b c : α) : (Ioo a b).map (addRightEmbedding c) = Ioo (a + c) (b + c)
        @[simp] lemma map_add_right_Ioo (a b c : α) :
    (Ioo a b).map (addRightEmbedding c) = Ioo (a + c) (b + c) := by
  rw [← coe_inj, coe_map, coe_Ioo, coe_Ioo]
  exact Set.image_add_const_Ioo _ _ _
        Finset.image_add_left_Icc
      theorem
     (a b c : α) : (Icc a b).image (c + ·) = Icc (c + a) (c + b)
        @[simp] lemma image_add_left_Icc (a b c : α) : (Icc a b).image (c + ·) = Icc (c + a) (c + b) := by
  rw [← map_add_left_Icc, map_eq_image, addLeftEmbedding, Embedding.coeFn_mk]
        Finset.image_add_left_Ico
      theorem
     (a b c : α) : (Ico a b).image (c + ·) = Ico (c + a) (c + b)
        @[simp] lemma image_add_left_Ico (a b c : α) : (Ico a b).image (c + ·) = Ico (c + a) (c + b) := by
  rw [← map_add_left_Ico, map_eq_image, addLeftEmbedding, Embedding.coeFn_mk]
        Finset.image_add_left_Ioc
      theorem
     (a b c : α) : (Ioc a b).image (c + ·) = Ioc (c + a) (c + b)
        @[simp] lemma image_add_left_Ioc (a b c : α) : (Ioc a b).image (c + ·) = Ioc (c + a) (c + b) := by
  rw [← map_add_left_Ioc, map_eq_image, addLeftEmbedding, Embedding.coeFn_mk]
        Finset.image_add_left_Ioo
      theorem
     (a b c : α) : (Ioo a b).image (c + ·) = Ioo (c + a) (c + b)
        @[simp] lemma image_add_left_Ioo (a b c : α) : (Ioo a b).image (c + ·) = Ioo (c + a) (c + b) := by
  rw [← map_add_left_Ioo, map_eq_image, addLeftEmbedding, Embedding.coeFn_mk]
        Finset.image_add_right_Icc
      theorem
     (a b c : α) : (Icc a b).image (· + c) = Icc (a + c) (b + c)
        @[simp] lemma image_add_right_Icc (a b c : α) : (Icc a b).image (· + c) = Icc (a + c) (b + c) := by
  rw [← map_add_right_Icc, map_eq_image, addRightEmbedding, Embedding.coeFn_mk]
        Finset.image_add_right_Ico
      theorem
     (a b c : α) : (Ico a b).image (· + c) = Ico (a + c) (b + c)
        @[simp] lemma image_add_right_Ico (a b c : α) : (Ico a b).image (· + c) = Ico (a + c) (b + c) := by
  rw [← map_add_right_Ico, map_eq_image, addRightEmbedding, Embedding.coeFn_mk]
        Finset.image_add_right_Ioc
      theorem
     (a b c : α) : (Ioc a b).image (· + c) = Ioc (a + c) (b + c)
        @[simp] lemma image_add_right_Ioc (a b c : α) : (Ioc a b).image (· + c) = Ioc (a + c) (b + c) := by
  rw [← map_add_right_Ioc, map_eq_image, addRightEmbedding, Embedding.coeFn_mk]
        Finset.image_add_right_Ioo
      theorem
     (a b c : α) : (Ioo a b).image (· + c) = Ioo (a + c) (b + c)
        @[simp] lemma image_add_right_Ioo (a b c : α) : (Ioo a b).image (· + c) = Ioo (a + c) (b + c) := by
  rw [← map_add_right_Ioo, map_eq_image, addRightEmbedding, Embedding.coeFn_mk]