Module docstring
{"# Multiplication by a positive element as an order isomorphism "}
{"# Multiplication by a positive element as an order isomorphism "}
OrderIso.mulLeft₀
definition
(a : G₀) (ha : 0 < a) : G₀ ≃o G₀
/-- `Equiv.mulLeft₀` as an order isomorphism. -/
@[simps! +simpRhs]
def mulLeft₀ (a : G₀) (ha : 0 < a) : G₀ ≃o G₀ where
toEquiv := .mulLeft₀ a ha.ne'
map_rel_iff' := mul_le_mul_left ha
OrderIso.mulLeft₀_symm
theorem
(a : G₀) (ha : 0 < a) : (mulLeft₀ a ha).symm = mulLeft₀ a⁻¹ (inv_pos.2 ha)
OrderIso.mulRight₀
definition
(a : G₀) (ha : 0 < a) : G₀ ≃o G₀
/-- `Equiv.mulRight₀` as an order isomorphism. -/
@[simps! +simpRhs]
def mulRight₀ (a : G₀) (ha : 0 < a) : G₀ ≃o G₀ where
toEquiv := .mulRight₀ a ha.ne'
map_rel_iff' := mul_le_mul_right ha
OrderIso.mulRight₀_symm
theorem
(a : G₀) (ha : 0 < a) : (mulRight₀ a ha).symm = mulRight₀ a⁻¹ (Right.inv_pos.2 ha)
lemma mulRight₀_symm (a : G₀) (ha : 0 < a) :
(mulRight₀ a ha).symm = mulRight₀ a⁻¹ (Right.inv_pos.2 ha) := by ext; rfl
OrderIso.divRight₀
definition
(a : G₀) (ha : 0 < a) : G₀ ≃o G₀
/-- `Equiv.divRight₀` as an order isomorphism. -/
@[simps! +simpRhs]
def divRight₀ (a : G₀) (ha : 0 < a) : G₀ ≃o G₀ where
toEquiv := .divRight₀ a ha.ne'
map_rel_iff' {b c} := by
simp only [Equiv.divRight₀_apply, div_eq_mul_inv]
exact mul_le_mul_right (a := a⁻¹) (Right.inv_pos.mpr ha)