Module docstring
{"# Lemmas about inequalities with 1. "}
{"# Lemmas about inequalities with 1. "}
one_le_dite
theorem
[LE α] (ha : ∀ h, 1 ≤ a h) (hb : ∀ h, 1 ≤ b h) : 1 ≤ dite p a b
@[to_additive dite_nonneg]
lemma one_le_dite [LE α] (ha : ∀ h, 1 ≤ a h) (hb : ∀ h, 1 ≤ b h) : 1 ≤ dite p a b := by
split; exacts [ha ‹_›, hb ‹_›]
dite_le_one
theorem
[LE α] (ha : ∀ h, a h ≤ 1) (hb : ∀ h, b h ≤ 1) : dite p a b ≤ 1
@[to_additive]
lemma dite_le_one [LE α] (ha : ∀ h, a h ≤ 1) (hb : ∀ h, b h ≤ 1) : dite p a b ≤ 1 := by
split; exacts [ha ‹_›, hb ‹_›]
one_lt_dite
theorem
[LT α] (ha : ∀ h, 1 < a h) (hb : ∀ h, 1 < b h) : 1 < dite p a b
@[to_additive dite_pos]
lemma one_lt_dite [LT α] (ha : ∀ h, 1 < a h) (hb : ∀ h, 1 < b h) : 1 < dite p a b := by
split; exacts [ha ‹_›, hb ‹_›]
dite_lt_one
theorem
[LT α] (ha : ∀ h, a h < 1) (hb : ∀ h, b h < 1) : dite p a b < 1
@[to_additive]
lemma dite_lt_one [LT α] (ha : ∀ h, a h < 1) (hb : ∀ h, b h < 1) : dite p a b < 1 := by
split; exacts [ha ‹_›, hb ‹_›]
one_le_ite
theorem
[LE α] (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ ite p a b
@[to_additive ite_nonneg]
lemma one_le_ite [LE α] (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ ite p a b := by split <;> assumption
ite_le_one
theorem
[LE α] (ha : a ≤ 1) (hb : b ≤ 1) : ite p a b ≤ 1
@[to_additive]
lemma ite_le_one [LE α] (ha : a ≤ 1) (hb : b ≤ 1) : ite p a b ≤ 1 := by split <;> assumption
one_lt_ite
theorem
[LT α] (ha : 1 < a) (hb : 1 < b) : 1 < ite p a b
@[to_additive ite_pos]
lemma one_lt_ite [LT α] (ha : 1 < a) (hb : 1 < b) : 1 < ite p a b := by split <;> assumption
ite_lt_one
theorem
[LT α] (ha : a < 1) (hb : b < 1) : ite p a b < 1
@[to_additive]
lemma ite_lt_one [LT α] (ha : a < 1) (hb : b < 1) : ite p a b < 1 := by split <;> assumption