doc-next-gen

Mathlib.Algebra.Module.Equiv.Opposite

Module docstring

{"# Module operations on Mᵐᵒᵖ

This file contains definitions that build on top of the group action definitions in Mathlib.Algebra.GroupWithZero.Action.Opposite. "}

LinearMap.ext_ring_op theorem
{σ : Rᵐᵒᵖ →+* S} {f g : R →ₛₗ[σ] M} (h : f (1 : R) = g (1 : R)) : f = g
Full source
@[ext high]
theorem LinearMap.ext_ring_op
    {σ : RᵐᵒᵖRᵐᵒᵖ →+* S} {f g : R →ₛₗ[σ] M} (h : f (1 : R) = g (1 : R)) :
    f = g :=
  ext fun x ↦ by
    rw [← one_mul x, ← op_smul_eq_mul, f.map_smulₛₗ, h, g.map_smulₛₗ]
Equality of linear maps determined by their value at 1
Informal description
Let $R$ and $S$ be semirings, and let $\sigma: R^\text{op} \to S$ be a ring homomorphism from the multiplicative opposite of $R$ to $S$. For any two $\sigma$-linear maps $f, g: R \to M$ (where $M$ is an $S$-module), if $f(1) = g(1)$, then $f = g$.
MulOpposite.opLinearEquiv definition
: M ≃ₗ[R] Mᵐᵒᵖ
Full source
/-- The function `op` is a linear equivalence. -/
def opLinearEquiv : M ≃ₗ[R] Mᵐᵒᵖ :=
  { opAddEquiv with map_smul' := MulOpposite.op_smul }
Linear equivalence between a module and its multiplicative opposite
Informal description
The function $\text{op} : M \to M^\text{op}$ is a linear equivalence between a module $M$ over a semiring $R$ and its multiplicative opposite $M^\text{op}$. Here, $M^\text{op}$ is equipped with the module structure where scalar multiplication is defined by $r \cdot \text{op}(m) = \text{op}(r \cdot m)$ for all $r \in R$ and $m \in M$.
MulOpposite.coe_opLinearEquiv theorem
: (opLinearEquiv R : M → Mᵐᵒᵖ) = op
Full source
@[simp]
theorem coe_opLinearEquiv : (opLinearEquiv R : M → Mᵐᵒᵖ) = op :=
  rfl
Underlying Function of Linear Equivalence to Multiplicative Opposite is Canonical Embedding
Informal description
The underlying function of the linear equivalence $\text{opLinearEquiv}_R$ from a module $M$ to its multiplicative opposite $M^\text{op}$ is equal to the canonical embedding $\text{op} : M \to M^\text{op}$.
MulOpposite.coe_opLinearEquiv_symm theorem
: ((opLinearEquiv R).symm : Mᵐᵒᵖ → M) = unop
Full source
@[simp]
theorem coe_opLinearEquiv_symm : ((opLinearEquiv R).symm : Mᵐᵒᵖ → M) = unop :=
  rfl
Inverse of Module-Opposite Linear Equivalence is Canonical Projection
Informal description
The inverse of the linear equivalence $\text{opLinearEquiv}_R : M \simeq M^\text{op}$ between a module $M$ over a semiring $R$ and its multiplicative opposite $M^\text{op}$ is equal to the canonical projection $\text{unop} : M^\text{op} \to M$.
MulOpposite.coe_opLinearEquiv_toLinearMap theorem
: ((opLinearEquiv R).toLinearMap : M → Mᵐᵒᵖ) = op
Full source
@[simp]
theorem coe_opLinearEquiv_toLinearMap : ((opLinearEquiv R).toLinearMap : M → Mᵐᵒᵖ) = op :=
  rfl
Linear map of the module-multiplicative opposite equivalence is the canonical embedding
Informal description
The underlying linear map of the linear equivalence $\text{opLinearEquiv}_R : M \to M^\text{op}$ is equal to the canonical embedding $\text{op} : M \to M^\text{op}$.
MulOpposite.coe_opLinearEquiv_symm_toLinearMap theorem
: ((opLinearEquiv R).symm.toLinearMap : Mᵐᵒᵖ → M) = unop
Full source
@[simp]
theorem coe_opLinearEquiv_symm_toLinearMap :
    ((opLinearEquiv R).symm.toLinearMap : Mᵐᵒᵖ → M) = unop :=
  rfl
Inverse of Linear Equivalence to Opposite Module as Canonical Projection
Informal description
The linear map associated with the inverse of the linear equivalence $\text{opLinearEquiv}_R : M \simeq_{R} M^\text{op}$ is equal to the canonical projection $\text{unop} : M^\text{op} \to M$.
MulOpposite.opLinearEquiv_toAddEquiv theorem
: (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).toAddEquiv = opAddEquiv
Full source
theorem opLinearEquiv_toAddEquiv : (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).toAddEquiv = opAddEquiv :=
  rfl
Additive Equivalence Component of $\text{opLinearEquiv}_R$ Equals $\text{opAddEquiv}$
Informal description
The additive equivalence component of the linear equivalence $\text{opLinearEquiv}_R : M \simeq_{R} M^\text{op}$ between a module $M$ over a semiring $R$ and its multiplicative opposite $M^\text{op}$ is equal to the additive equivalence $\text{opAddEquiv} : M \simeq_{+} M^\text{op}$.
MulOpposite.coe_opLinearEquiv_addEquiv theorem
: ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ) : M ≃+ Mᵐᵒᵖ) = opAddEquiv
Full source
@[simp]
theorem coe_opLinearEquiv_addEquiv : ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ) : M ≃+ Mᵐᵒᵖ) = opAddEquiv :=
  rfl
Additive Equivalence Underlying the Linear Equivalence Between a Module and Its Opposite
Informal description
The underlying additive equivalence of the linear equivalence $\text{opLinearEquiv}_R : M \simeq_{R} M^\text{op}$ between a module $M$ over a semiring $R$ and its multiplicative opposite $M^\text{op}$ is equal to the additive equivalence $\text{opAddEquiv} : M \simeq^+ M^\text{op}$.
MulOpposite.opLinearEquiv_symm_toAddEquiv theorem
: (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm.toAddEquiv = opAddEquiv.symm
Full source
theorem opLinearEquiv_symm_toAddEquiv :
    (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm.toAddEquiv = opAddEquiv.symm :=
  rfl
Additive Equivalence Component of Inverse Linear Equivalence Between Module and Its Opposite
Informal description
The additive equivalence component of the inverse of the linear equivalence $\text{opLinearEquiv}_R : M \simeq_{R} M^\text{op}$ between a module $M$ over a semiring $R$ and its multiplicative opposite $M^\text{op}$ is equal to the inverse of the additive equivalence $\text{opAddEquiv} : M \simeq_{+} M^\text{op}$.
MulOpposite.coe_opLinearEquiv_symm_addEquiv theorem
: ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm : Mᵐᵒᵖ ≃+ M) = opAddEquiv.symm
Full source
@[simp]
theorem coe_opLinearEquiv_symm_addEquiv :
    ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm : MᵐᵒᵖMᵐᵒᵖ ≃+ M) = opAddEquiv.symm :=
  rfl
Additive Equivalence of Inverse Linear Equivalence Between Module and Its Opposite
Informal description
The underlying additive equivalence of the inverse of the linear equivalence $\text{opLinearEquiv}_R : M \simeq_{R} M^\text{op}$ between a module $M$ over a semiring $R$ and its multiplicative opposite $M^\text{op}$ is equal to the inverse of the additive equivalence $\text{opAddEquiv} : M \simeq^+ M^\text{op}$.