Module docstring
{"# Module operations on Mᵐᵒᵖ
This file contains definitions that build on top of the group action definitions in
Mathlib.Algebra.GroupWithZero.Action.Opposite.
"}
{"# Module operations on Mᵐᵒᵖ
This file contains definitions that build on top of the group action definitions in
Mathlib.Algebra.GroupWithZero.Action.Opposite.
"}
LinearMap.ext_ring_op
      theorem
     {σ : Rᵐᵒᵖ →+* S} {f g : R →ₛₗ[σ] M} (h : f (1 : R) = g (1 : R)) : f = g
        @[ext high]
theorem LinearMap.ext_ring_op
    {σ : RᵐᵒᵖRᵐᵒᵖ →+* S} {f g : R →ₛₗ[σ] M} (h : f (1 : R) = g (1 : R)) :
    f = g :=
  ext fun x ↦ by
    rw [← one_mul x, ← op_smul_eq_mul, f.map_smulₛₗ, h, g.map_smulₛₗ]
        MulOpposite.opLinearEquiv
      definition
     : M ≃ₗ[R] Mᵐᵒᵖ
        /-- The function `op` is a linear equivalence. -/
def opLinearEquiv : M ≃ₗ[R] Mᵐᵒᵖ :=
  { opAddEquiv with map_smul' := MulOpposite.op_smul }
        MulOpposite.coe_opLinearEquiv
      theorem
     : (opLinearEquiv R : M → Mᵐᵒᵖ) = op
        @[simp]
theorem coe_opLinearEquiv : (opLinearEquiv R : M → Mᵐᵒᵖ) = op :=
  rfl
        MulOpposite.coe_opLinearEquiv_symm
      theorem
     : ((opLinearEquiv R).symm : Mᵐᵒᵖ → M) = unop
        @[simp]
theorem coe_opLinearEquiv_symm : ((opLinearEquiv R).symm : Mᵐᵒᵖ → M) = unop :=
  rfl
        MulOpposite.coe_opLinearEquiv_toLinearMap
      theorem
     : ((opLinearEquiv R).toLinearMap : M → Mᵐᵒᵖ) = op
        @[simp]
theorem coe_opLinearEquiv_toLinearMap : ((opLinearEquiv R).toLinearMap : M → Mᵐᵒᵖ) = op :=
  rfl
        MulOpposite.coe_opLinearEquiv_symm_toLinearMap
      theorem
     : ((opLinearEquiv R).symm.toLinearMap : Mᵐᵒᵖ → M) = unop
        @[simp]
theorem coe_opLinearEquiv_symm_toLinearMap :
    ((opLinearEquiv R).symm.toLinearMap : Mᵐᵒᵖ → M) = unop :=
  rfl
        MulOpposite.opLinearEquiv_toAddEquiv
      theorem
     : (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).toAddEquiv = opAddEquiv
        theorem opLinearEquiv_toAddEquiv : (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).toAddEquiv = opAddEquiv :=
  rfl
        MulOpposite.coe_opLinearEquiv_addEquiv
      theorem
     : ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ) : M ≃+ Mᵐᵒᵖ) = opAddEquiv
        @[simp]
theorem coe_opLinearEquiv_addEquiv : ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ) : M ≃+ Mᵐᵒᵖ) = opAddEquiv :=
  rfl
        MulOpposite.opLinearEquiv_symm_toAddEquiv
      theorem
     : (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm.toAddEquiv = opAddEquiv.symm
        theorem opLinearEquiv_symm_toAddEquiv :
    (opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm.toAddEquiv = opAddEquiv.symm :=
  rfl
        MulOpposite.coe_opLinearEquiv_symm_addEquiv
      theorem
     : ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm : Mᵐᵒᵖ ≃+ M) = opAddEquiv.symm
        @[simp]
theorem coe_opLinearEquiv_symm_addEquiv :
    ((opLinearEquiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm : MᵐᵒᵖMᵐᵒᵖ ≃+ M) = opAddEquiv.symm :=
  rfl